16:00
A Galois counting problem
Abstract
We count monic quartic polynomials with prescribed Galois group, by box height. Among other things, we obtain the order of magnitude for quartics, and show that non-quartics are dominated by reducibles. Tools include the geometry of numbers, diophantine approximation, the invariant theory of binary forms, and the determinant method. Joint with Rainer Dietmann.
with IceCube
16:00
Probabilistic arithmetic geometry
Abstract
A famous theorem due to Erdős and Kac states that the number of prime divisors of an integer N behaves like a normal distribution. In this talk we consider analogues of this result in the setting of arithmetic geometry, and obtain probability distributions for questions related to local solubility of algebraic varieties. This is joint work with Efthymios Sofos.
16:00
The fundamental theorem of Weil II (for curves) with ultra product coefficients
Abstract
l-adic cohomology was built to provide an etale cohomology with coefficients in a field of characteristic 0. This, via the Grothendieck trace formula, gives a cohomological interpretation of L-functions - a fundamental tool in Deligne's theory of weights developed in Weil II. Instead of l-adic coefficients one can consider coefficients in ultra products of finite fields. I will state the fundamental theorem of Weil II for curves in this setting and explain briefly what are the difficulties to overcome to adjust Deligne's proof. I will then discuss how this ultra product variant of Weil II allows to extend to arbitrary coefficients previous results of Gabber and Hui, Tamagawa and myself for constant $\mathbb{Z}_\ell$-coefficients. For instance, it implies that, in an $E$-rational compatible system of smooth $\overline{\mathbb{Q}}_\ell$-sheaves all what is true for $\overline{\mathbb{Q}}_\ell$-coefficients (semi simplicity, irreducibility, invariant dimensions etc) is true for $\overline{\mathbb{F}}_\ell$-coefficients provided $\ell$ is large enough or that the $\overline{\mathbb{Z}}_\ell$-models are unique with torsion-free cohomology provided $\ell$ is large enough.