Thu, 01 Dec 2016
17:30
L6

Pfaffian functions and elliptic functions

Gareth Jones
(Manchester)
Abstract

After giving some motivation, I will discuss work in progress with Harry Schmidt in which we give a pfaffian definition of Weierstrass elliptic functions, refining a result due to Macintyre. The complexity of our definition is bounded by an effective absolute constant. As an application we give an effective version of a result of Corvaja, Masser and Zannier on a sharpening of Manin-Mumford for non-split extensions of elliptic curves by the additive group. We also give a higher dimensional version of their result.

Thu, 10 Nov 2016
17:30
L6

Profinite groups with NIP theory and p-adic analytic groups

Dugald Macpherson
(Leeds)
Abstract

I will describe joint work with Katrin Tent, in which we consider a profinite group equipped with a uniformly definable family of open subgroups. We show that if the family is `full’ (i.e. includes all open subgroups) then the group has NIP theory if and only if it has NTP_2 theory, if and only if it has an (open) normal subgroup of finite index which is a direct product of finitely many compact p-adic analytic groups (for distinct primes p). Without the `fullness’ assumption, if the group has NIP theory then it  has a prosoluble open normal subgroup of finite index.

Thu, 03 Nov 2016
16:00
L6

Joint Logic/Number Theory Seminar: Arithmetic applications of $\omega$-integral curves in varieties

Natalia Garcia-Fritz
(Toronto)
Abstract

In 2000, Vojta solved the n-squares problem under the Bombieri-Lang conjecture, by explicitly finding all the curves of genus 0 or 1 on the surfaces related to this problem. The fundamental notion used by him is $\omega$-integrality of curves. 
In this talk, I will show a generalization of Vojta's method to find all curves of low genus in some surfaces, with arithmetic applications.
I will also explain how to use $\omega$-integrality to obtain a bound of the height of a non-constant morphism from a curve to $\mathbb{P}^2$ in terms of the number of intersections (without multiplicities) of its image with a divisor of a particular kind. This proves some new special cases of Vojta's conjecture for function fields.
 

Thu, 13 Oct 2016
17:30
L6

The theory of the entire algebraic functions

Ehud Hrushovski
(Oxford)
Abstract

Van den Dries has proved the decidability of the ring of algebraic integers, the integral closure of the ring of integers in
the algebraic closure of the rationals.  A well-established analogy leads to ask the same question for the ring of complex polynomials.
This turns out to go the other way, interpreting the rational field.    An interesting structure on the
limit of Jacobians of all complex curves is encountered along the way. 

Fri, 09 Dec 2016

10:00 - 11:00
L2

Towards a drive-through wheel alignment system

Alex Codd
(WheelRight)
Abstract

As part of a suite of products that provide a drive thorough vehicle tyre inspection system the assessment of wheel alignment would be useful to drivers in maintaining their vehicles and reducing tyre wear.  The current method of assessing wheel alignment involves fitting equipment to the tyre and assessment within a garage environment. 

The challenge is to develop a technique that can be used in the roadway with no equipment fitted to the vehicle.  The WheelRight equipment is already capturing images of tyres from both  front and side views.  Pressure sensors in the roadway also allow a tyre pressure footprint to be created.  Using the existing data to interpret the alignment of the wheels on each axle is a preferred way forward.

Mon, 06 Mar 2017

16:00 - 17:00
L4

Ricci Flow as a mollifier

Peter Topping
(University of Warwick)
Abstract


A familiar technique in PDE theory is to use mollification to adjust a function controlled in some weak norm into a smooth function with corresponding control on its $C^k$ norm. It would be extremely useful to be able to do the same sort of regularisation for Riemannian metrics, and one might hope to use Ricci flow to do this. However, attempting to do so throws up some fundamental problems concerning the well-posedness of Ricci flow. I will explain some recent developments that allow us to use Ricci flow in this way in certain important cases. In particular, the Ricci flow will now allow us to adjust a `noncollapsed’ 3-manifold with a lower bound on its Ricci curvature through a family of such manifolds, without disturbing the Riemannian distance function too much, and so that we instantly obtain uniform bounds on the full curvature tensor and all its derivatives. These ideas lead to the resolution of some long-standing open problems in geometry.

No previous knowledge of Ricci flow will be assumed, and differential geometry prerequisites will be kept to a minimum.

Joint work with Miles Simon.
 

Subscribe to