Tue, 13 Oct 2015
14:30
L6

Rainbow Connectivity

Nina Kamčev
(ETH Zurich)
Abstract

An edge (vertex) coloured graph is rainbow-connected if there is a rainbow path between any two vertices, i.e. a path all of whose edges (internal vertices) carry distinct colours. Rainbow edge (vertex) connectivity of a graph G is the smallest number of colours needed for a rainbow edge (vertex) colouring of G. We propose a very simple approach to studying rainbow connectivity in graphs. Using this idea, we give a unified proof of several new and known results, focusing on random regular graphs. This is joint work with Michael Krivelevich and Benny Sudakov.

Mon, 02 Nov 2015
14:15
L4

On the principal Ricci curvatures of a Riemannian 3-manifold

Amir Aazami
(IPMU)
Abstract
Milnor has shown that three-dimensional Lie groups with left invariant Riemannian metrics furnish examples of 3-manifolds with principal Ricci curvatures of fixed signature --- except for the signatures (-,+,+), (0,+,-), and (0,+,+).  We examine these three cases on a Riemannian 3-manifold, and prove global obstructions in certain cases.  For example, if the manifold is closed, then the signature (-,+,+) is not globally possible if it is of the form -µ,f,f, with µ a positive constant and f a smooth function that never takes the values 0,-µ (this generalizes a result by Yamato '91).  Similar obstructions for the other cases will also be discussed.  Our methods of proof rely upon frame techniques inspired by the Newman-Penrose formalism.  Thus, we will close by turning our attention to four dimensions and Lorentzian geometry, to uncover a relation between null vector fields and exact symplectic forms, with relations to Weinstein structures. 
Mon, 30 Nov 2015
14:15
L4

The structure of instability in moduli theory

Daniel Halpern-Leistner
(Columbia)
Abstract

I will discuss theta-stability, a framework for analyzing moduli problems in algebraic geometry by finding a special kind of stratification called a theta-stratification, a notion which generalizes the Kempf-Ness stratification in geometric invariant theory and the Harder-Narasimhan-Shatz stratification of the moduli of vector bundles on a Riemann surface.

Analysis of forward and backward Second Harmonic Generation images to probe the nanoscale structure of collagen within bone and cartilage.
Houle, M Couture, C Bancelin, S Van der Kolk, J Auger, E Brown, C Popov, K Ramunno, L Légaré, F Journal of biophotonics volume 8 issue 11-12 993-1001 (09 Nov 2015)
Wed, 18 Nov 2015
15:00
L2

Algebraic Codes for Public Key Cryptography

Alain Couvreur
(Ecole Polytechnique)
Abstract

We present McEliece encryption scheme and some well-known proposals based on various families of error correcting codes. We introduce several methods for cryptanalysis in order to study the security of the presented proposals.

Tue, 27 Oct 2015

17:30 - 18:30
L3

Empirical phenomena and universal laws

Professor Peter McCullagh, FRS,
(University of Chicago)
Abstract

In 1943 Fisher, together with Corbet and Williams, published a study on the relation between the number of species and the number of individuals, which has since been recognized as one of the most influential papers in 20th century ecology. It was a combination of empirical work backed up by a simple theoretical argument, which describes a sort of universal law governing random partitions, such as the celebrated Ewens partition whose original derivation flows from the Fisher-Wright model. This talk will discuss several empirical studies of a similar sort, including Taylor's law and recent work related to Fairfield-Smith's work on the variance of spatial averages.

Mon, 19 Oct 2015

16:00 - 17:00
L5

The tangential touch problem for fully nonlinear elliptic operators

Emanuel Indrei
(Carnegie Mellon Univeristy)
Abstract
The tangential touch problem in elliptic theory consists of exposing the dynamics of the free boundary near the fixed boundary in obstacle problems. The solution of this problem is discussed for fully nonlinear elliptic operators in two dimensions.
Based on joint work with Andreas Minne.
Subscribe to