Ancient Solutions to Navier-Stokes Equations in Half Space
Abstract
The relationship between the so-called ancient (backwards) solutions to the Navier-Stokes equations in the space or in a half space and the global well-posedness of initial boundary value problems for these equations will be explained. If time permits I will sketch details of an equivalence theorem and a proof of smoothness properties of mild bounded ancient solutions in the half space, which is a joint work with Gregory Seregin