In this lecture Sir Roger Penrose describes how crystalline symmetries are necessarily 2-fold, 3-fold, 4-fold, or 6-fold. Yet, in the 1970s, 5-fold, 8-fold, 10-fold and 12-fold, ‘almost’ crystalline patterns were found, often beautiful to behold.

These structures have influenced mathematicians and architects alike, notably in the new Mathematical Institute Building where Roger’s own unique non-repeating pattern adorns the entrance.

 

Thu, 27 Nov 2014
11:00
C5

Axiomatizing Q by "G_Q + ε"

Jochen Koenigsmann
(Oxford)
Abstract

we discuss various conjectures about the absolute Galois group G_Q  of the field Q of rational numbers and to what extent it encodes the elementary theory of Q.

Thu, 27 Nov 2014

14:00 - 16:00
L4

Geometric Satake Equivalence

Pavel Safronov
(University of Oxford)
Abstract

Both sides of the geometric Langlands correspondence have natural Hecke
symmetries. I will explain an identification between the Hecke
symmetries on both sides via the geometric Satake equivalence. On the
abelian level it relates the topology of a variety associated to a group
and the representation category of its Langlands dual group.
 

Thu, 04 Dec 2014

16:00 - 17:00
C2

Introduction to Concepts of General Relativity

Felix Tennie
(Oxford University)
Abstract

Since its genesis in 1915, General Relativity has proven to be one of the most successful physical theories ever invented. Providing a description of the large scale structure of the universe it continues to be in agreement with all experimental tests to high accuracy. By merging Classical Mechanics and Electrodynamics to a consistent geometrical theory of space-time it has become one of the two pillars of modern theoretical physics alongside Quantum Mechanics. This talk aims to give an introduction to the ideas and concepts of General Relativity. After briefly reviewing Classical (Newtonian) Mechanics and experiments in contradiction with it the framework and axioms of General Relativity will be introduced. This will be followed by a survey on major implications of the (new) geometrical description of gravity. Finally an outlook on physics beyond General Relativity will be provided. 

How to upload images and insert them into your content.
Tue, 02 Dec 2014

14:30 - 15:00
L5

The maximal Sobolev regularity of distributions supported by arbitrary subsets of R^n

David Hewett
(University of Oxford)
Abstract

Given a subset E of R^n with empty interior, what is the maximum regularity exponent s for which there exist non-zero distributions in the Bessel potential Sobolev space H^s_p(R^n) that are supported entirely inside E? This question has arisen many times in my recent investigations into boundary integral equation formulations of linear wave scattering by fractal screens, and it is closely related to other fundamental questions concerning Sobolev spaces defined on ``rough'' (i.e. non-Lipschitz) domains. Roughly speaking, one expects that the ``fatter'' the set, the higher the maximum regularity that can be supported. For sets of zero Lebesgue measure one can show, using results on certain set capacities from classical potential theory, that the maximum regularity (if it exists) is negative, and is (almost) characterised by the fractal (Hausdorff) dimension of E. For sets with positive measure the maximum regularity (if it exists) is non-negative,but appears more difficult to characterise in terms of geometrical properties of E.  I will present some partial results in this direction, which have recently been obtained by studying the asymptotic behaviour of the Fourier transform of the characteristic functions of certain fat Cantor sets.

Fri, 06 Mar 2015
16:30
L1

Big Bang, Blow Up, and Modular Curves: Algebraic Geometry in Cosmology

Prof. Yuri Manin
(Max Planck Institute and Northwestern University)
Abstract

Based upon our joint work with M. Marcolli, I will introduce some algebraic geometric models in cosmology related to the "boundaries" of space-time: Big Bang, Mixmaster Universe, and Roger Penrose's crossovers between aeons. We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a point $x$. This creates a boundary  which consists of the projective space of tangent directions to $x$ and possibly of the light cone of $x$. We argue that time on the boundary undergoes the Wick rotation and becomes purely imaginary. The Mixmaster (Bianchi IX) model of the early history of the universe is neatly explained in this picture by postulating that the reverse Wick rotation follows a hyperbolic geodesic connecting imaginary time axis to the real one. Roger Penrose's idea to see the Big Bang as a sign of crossover from "the end of the previous aeon" of the expanding and cooling Universe to the "beginning of the next aeon" is interpreted as an identification of a natural boundary of Minkowski space at infinity with the Bing Bang boundary.

Subscribe to