Mon, 09 Mar 2015

17:00 - 18:00
L4

Sobolev inequalities in arbitrary domains

Andrea Cianchi
(Università degli Studi di Firenze)
Abstract

A theory of Sobolev inequalities in arbitrary open sets in $R^n$ is offered. Boundary regularity of domains is replaced with information on boundary traces of trial functions and of their derivatives up to some explicit minimal order. The relevant Sobolev inequalities involve constants independent of the geometry of the domain, and exhibit the same critical exponents as in the classical inequalities on regular domains. Our approach relies upon new representation formulas for Sobolev functions, and on ensuing pointwise estimates which hold in any open set. This is a joint work with V. Maz'ya.

Tue, 18 Nov 2014

17:00 - 18:00
C2

Commuting probabilities of finite groups

Sean Eberhard
(Oxford)
Abstract

The commuting probability of a finite group is defined to be the probability that two randomly chosen group elements commute. Not all rationals between 0 and 1 occur as commuting probabilities. In fact Keith Joseph conjectured in 1977 that all limit points of the set of commuting probabilities are rational, and moreover that these limit points can only be approached from above. In this talk we'll discuss a structure theorem for commuting probabilities which roughly asserts that commuting probabilities are nearly Egyptian fractions of bounded complexity. Joseph's conjectures are corollaries.

Below are listed upcoming public lectures and events at the Mathematical Institute. Click through into this section for a more detailed listing of all such events and also links to some public lectures online.
Thu, 13 Nov 2014

16:00 - 17:00
C2

Non-commutative topology and K-theory for applications to topological insulators

Guo Chuan Thiang
(Oxford University)
Abstract

I will recall basic notions of operator K-theory as a non-commutative (C*-algebra) generalisation of topological K-theory. Twisted crossed products will be introduced as generalisations of group C*-algebras, and a model of Karoubi's K-theory, which makes sense for super-algebras, will be sketched. The motivation comes from physics, through the study of quantum mechanical symmetries, charged free quantum fields, and topological insulators. The relevant theorems, which are interesting in their own right but scattered in the literature, will be consolidated.

Thu, 30 Oct 2014
11:00
C5

"Decidability in extensions of F_p((t))";

Ben Rigler
(Oxford)
Abstract

"We consider certain distinguished extensions of the field F_p((t)) of formal Laurent series over F_p, and look at questions about their model theory and Galois theory, with a particular focus on decidability."

Subscribe to