Tue, 18 Nov 2014

14:00 - 14:30
L5

On sparse representations for piecewise smooth signals

Andrew Thompson
(University of Oxford)
Abstract

It is well known that piecewise smooth signals are approximately sparse in a wavelet basis. However, other sparse representations are possible, such as the discrete gradient basis. It turns out that signals drawn from a random piecewise constant model have sparser representations in the discrete gradient basis than in Haar wavelets (with high probability). I will talk about this result and its implications, and also show some numerical experiments in which the use of the gradient basis improves compressive signal reconstruction.

Wed, 03 Dec 2014
12:30
N3.12

The Banach-Tarski paradox

Federico Vigolo
(Oxford University)
Abstract

The Banach-Tarski paradox is a celebrated result showing that, using the axiom of choice, it is possible to deconstruct a ball into finitely many pieces that may be rearranged to build two copies of that ball. In this seminar we will sketch the proof of the paradox trying to emphasize the key ideas.
 

Mon, 19 Jan 2015

17:00 - 18:00
L4

Carleman Estimates and Unique Continuation for Fractional Schroedinger Equations

Angkana Ruland
(University of Oxford)
Abstract
In this talk I present Carleman estimates for fractional Schroedinger
equations and discuss how these imply the strong unique continuation
principle even in the presence of rough potentials. Moreover, I show how
they can be used to derive quantitative unique continuation results in
the setting of compact manifolds. These quantitative estimates can then
be exploited to deduce upper bounds on the Hausdorff dimension of nodal
domains (of eigenfunctions to the investigated Dirichlet-to-Neumann maps).
Mon, 09 Feb 2015

17:00 - 18:00
L4

Global existence of solutions of the Ericksen-Leslie system for the Oseen-Frank model

Min-Chun Hong
(The University of Queensland)
Abstract

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Subscribe to