15:45
An ergodic backward stochastic differential equation approach to large time behaviour of some parabolic semilinear PDEs
Abstract
In this talk we study the large time behaviour of some semilinear parabolic PDEs by a purely probabilistic approach. For that purpose, we show that the solution of a backward stochastic differential equation (BSDE) in finite horizon $T$ taken at initial time behaves like a linear term in $T$ shifted with a solution of the associated ergodic BSDE taken at inital time. Moreover we give an explicit rate of convergence: we show that the following term in the asymptotic expansion has an exponential decay. This is a Joint work with Ying Hu and Pierre-Yves Meyer from Rennes (IRMAR - France).