Tue, 11 Nov 2014

14:30 - 15:30
L6

Matroid bases polytope decomposition

Jorge Ramirez-Alfonsin
(Université Montpellier 2)
Abstract
Let $P(M)$ be the matroid base polytope of a matroid $M$. A decomposition of $P(M)$ is a subdivision of the form $P(M)=\cup_{i=1}^t P(M_i)$ where each $P(M_i)$ is also a matroid base polytope for some matroid $M_i$, and for each $1\le i\neq j\le t$ the intersection $P(M_i)\cap P(M_j)$ is a face of both $P(M_i)$ and $P(M_j)$. In this talk, we shall discuss some results on hyperplane splits, that is, polytope decomposition when $t=2$. We present sufficient conditions for $M$ so $P(M)$ has a hyperplane split and a characterization when $P(M_i\oplus M_j)$ has a hyperplane split, where $M_i\oplus M_j$ denotes the direct sum of $M_i$ and $M_j$. We also show that $P(M)$ has not a hyperplane split if $M$ is binary. Finally, we present some recent results concerning the existence of decompositions with $t\ge 3$.
Tue, 21 Oct 2014

14:30 - 15:30
L6

Spanning Trees in Random Graphs

Richard Montgomery
(University of Cambridge)
Abstract
Given a tree $T$ with $n$ vertices, how large does $p$ need to be for it to be likely that a copy of $T$ appears in the binomial random graph $G(n,p)$? I will discuss this question, including recent work confirming a conjecture which gives a good answer to this question for trees with bounded maximum degree.
Mon, 01 Dec 2014

17:00 - 18:00
L6

Functions of bounded variation on metric measure spaces

Panu Lahti
(Aalto University)
Abstract

Functions of bounded variation, abbreviated as BV functions, are defined in the Euclidean setting as very weakly differentiable functions that form a more general class than Sobolev functions. They have applications e.g. as solutions to minimization problems due to the good lower semicontinuity and compactness properties of the class. During the past decade, a theory of BV functions has been developed in general metric measure spaces, which are only assumed to be sets endowed with a metric and a measure. Usually a so-called doubling property of the measure and a Poincaré inequality are also assumed. The motivation for studying analysis in such a general setting is to gain an understanding of the essential features and assumptions used in various specific settings, such as Riemannian manifolds, Carnot-Carathéodory spaces, graphs, etc. In order to generalize BV functions to metric spaces, an equivalent definition of the class not involving partial derivatives is needed, and several other characterizations have been proved, while others remain key open problems of the theory.

 

Panu is visting Oxford until March 2015 and can be found in S2.48

Mon, 24 Nov 2014

15:30 - 16:30
L2

Bifurcations in mathematical models of self-organization

Pierre Degond
(Imperial College London)
Abstract

We consider self-organizing systems, i.e. systems consisting of a large number of interacting entities which spontaneously coordinate and achieve a collective dynamics. Sush systems are ubiquitous in nature (flocks of birds, herds of sheep, crowds, ...). Their mathematical modeling poses a number of fascinating questions such as finding the conditions for the emergence of collective motion. In this talk, we will consider a simplified model first proposed by Vicsek and co-authors and consisting of self-propelled particles interacting through local alignment.
We will rigorously study the multiplicity and stability of its equilibria through kinetic theory methods. We will illustrate our findings by numerical simulations.

Mon, 17 Nov 2014

17:00 - 18:00
L6

Dynamics in anti-de Sitter spacetimes

Claude Warnick
(University of Warwick)
Abstract

When solving Einstein's equations with negative cosmological constant, the natural setting is that of an initial-boundary value problem. Data is specified on the timelike conformal boundary as well as on some initial spacelike (or null) hypersurface. At the PDE level, one finds that the boundary data is typically prescribed on a surface at which the equations become singular and standard energy estimates break down. I will discuss how to handle this singularity by introducing a renormalisation procedure. I will also talk about the consequences of different choices of boundary conditions for solutions of Einstein’s equations with negative cosmological constant.

Mon, 10 Nov 2014

16:00 - 17:00
L1

Stability of the Kerr Cauchy horizon

Jonathan Luk
(University of Cambridge)
Abstract

The celebrated strong cosmic censorship conjecture in general relativity in particular suggests that the Cauchy horizon in the interior of the Kerr black hole is unstable and small perturbations would give rise to singularities. We present a recent result proving that the Cauchy horizon is stable in the sense that spacetime arising from data close to that of Kerr has a continuous metric up to the Cauchy horizon. We discuss its implications on the nature of the potential singularity in the interior of the black hole. This is joint work with Mihalis Dafermos.

Mon, 03 Nov 2014

17:00 - 18:00
L6

On non-resistive MHD systems connected to magnetic relaxation

Jose L Rodrigo
(University of Warwick)
Abstract

In this talk I will present several results connected with the idea of magnetic relaxation for MHD, including some new commutator estimates (and a counterexample to the estimate in the critical case). (Joint work with various subsets of  D. McCormick, J. Robinson, C. Fefferman and J-Y. Chemin.)

Mon, 20 Oct 2014

17:00 - 18:00
L6

Asymptotic modelling of the fluid flow with a pressure-dependent viscosity

Igor Pazanin
(University of Zagreb)
Abstract
Our goal is to present recent results on the stationary motion of incompressible viscous fluid with a pressure-dependent viscosity. Under general assumptions on the viscosity-pressure relation (satisfied by the Barus formula and other empiric laws), first we discuss the existence and uniqueness of the solution of the corresponding boundary value problem. The main part of the talk is devoted to asymptotic analysis of such system in thin domains naturally appearing in the applications. We address the problems of fluid flow in pipe-like domains and also study the behavior of a lubricant flowing through a narrow gap. In each setting we rigorously derive new asymptotic model describing the effective flow. The key idea is to conveniently transform the governing problem into the Stokes system with small nonlinear perturbation.
This is a joint work with Eduard Marusic-Paloka (University of Zagreb).
Mon, 27 Oct 2014

17:00 - 18:00
L6

Continuous solutions to the degenerate Stefan problem

Paolo Baroni
(University of Uppsala)
Abstract

We consider the two-phase Stefan problem with p-degenerate diffusion, p larger than two, and we prove continuity up to the boundary for weak solutions, providing a modulus of continuity which we conjecture to be optimal. Since our results are proven in the form of a priori estimates for appropriate regularized problems, as corollary we infer the existence of a globally continuous weak solution for continuous Cauchy-Dirichlet datum.

Mon, 13 Oct 2014

17:00 - 18:00
L6

Kinetic formulation and uniqueness for scalar conservation laws with discontinuous flux

Guido de Phillippis
(University of Zurich)
Abstract

      I will show uniqueness result for BV solutions of scalar conservation laws with discontinuous flux in several space dimensions. The proof is based on the notion of kinetic solution and on a careful analysis of the entropy dissipation along the discontinuities of the flux.
 

Subscribe to