Tue, 25 Nov 2014

17:00 - 18:00
C2

On universal right angled Artin groups

Ashot Minasyan
(Southampton)
Abstract
A right angled Artin group (RAAG), also called a graph group or a partially commutative group, is a group which has a finite presentation where 
the only permitted defining relators are commutators of the generators. These groups and their subgroups play an important role in Geometric Group Theory, especially in view of the recent groundbreaking results of Haglund, Wise, Agol, and others, showing that many groups possess finite index subgroups that embed into RAAGs.
In their recent work on limit groups over right angled Artin groups, Casals-Ruiz and Kazachkov asked whether for every natural number n there exists a single "universal" RAAG, A_n, containing all n-generated subgroups of RAAGs. Motivated by this question, I will discuss several results showing that "universal" (in various contexts) RAAGs generally do not exist. I will also mention some positive results about universal groups for finitely presented n-generated subgroups of direct products of free and limit groups.
Tue, 28 Oct 2014

17:00 - 18:00
C2

Ziegler spectra of domestic string algebras

Mike Prest
(Manchester)
Abstract

String algebras are tame - their finite-dimensional representations have been classified - and the Auslander-Reiten quiver of such an algebra shows some of the morphisms between them.  But not all.  To see the morphisms which pass between components of the Auslander-Reiten quiver, and so obtain a more complete picture of the category of representations, we should look at certain infinite-dimensional representations and use ideas and techniques from the model theory of modules.

This is joint work with Rosie Laking and Gena Puninski:
G. Puninski and M. Prest,  Ringel's conjecture for domestic string algebras, arXiv:1407.7470;
R. Laking, M. Prest and G. Puninski, Krull-Gabriel dimension of domestic string algebras, in preparation.

Wed, 29 Oct 2014
14:00
L2

The Structure of Counterexamples to Vaught's Conjecture

Robin Knight
(Oxford)
Abstract

Counterexamples to Vaught's Conjecture regarding the number of countable
models of a theory in a logical language, may felicitously be studied by investigating a tree
of types of different arities and belonging to different languages. This
tree emerges from a category of topological spaces, and may be studied as such, without
reference to the original logic. The tree has an intuitive character of absoluteness
and of self-similarity. We present theorems expressing these ideas, some old and some new.

Subscribe to