Thu, 26 May 2016
17:30
L6

Topological dynamics of automorphism groups and the Hrushovski constructions

David Evans
(Imperial College, London)
Abstract

I will consider automorphism groups of countable structures acting continuously on compact spaces: the viewpoint of topological dynamics. A beautiful paper of Kechris, Pestov and Todorcevic makes a connection between this and the ‘structural Ramsey theory’ of Nesetril, Rodl and others in finite combinatorics. I will describe some results and questions in the area and say how the Hrushovski predimension constructions provide answers to some of these questions (but then raise more questions). This is joint work with Hubicka and Nesetril.

 
Thu, 19 May 2016
17:30
L6

Interpreting formulas of divisible abelian l-groups in lattices of zero sets

Marcus Tressl
(Manchester)
Abstract

An abelian l-group G is essentially a partially ordered subgroup of functions from a set to a totally ordered abelian group such

that G is closed under taking finite infima and suprema. For example, G could be the continuous semi-linear functions defined on the open
unit square, or, G could be the continuous semi-algebraic functions defined in the plane with values in (0,\infty), where the group
operation is multiplication. I will show how G, under natural geometric assumptions, can be interpreted (in a weak sense) in its lattice of
zero sets. This will then be applied to the model theory of natural divisible abelian l-groups. For example we will see that the
aforementioned examples are elementary equivalent. (Parts of the results have been announced in a preliminary report from 1987 by F. Shen
and V. Weispfenning.)

Thu, 12 May 2016
16:00
L6

Joint Number Theory/Logic Seminar: Two models for the hyperbolic plane and existence of the Poincare metric on compact Riemann surfaces

Norbert A'Campo
(Basel)
Abstract
An implicite definition for the hyperbolic plane $H=H_I$ is in:
${\rm Spec}(\mathbb{R}[X]) = H_I \setunion  \mathbb{R}$.
All geometric hyperbolic features will follow from this definition in an elementary way.
 
A second definition is 
$H=H_J=\{J \in {\rm End}(R^2) \mid J^2=-Id, dx \wedge dy(u,Ju) \geq 0 \}$.
Working with $H=H_J$ allows to prove rather directly main theorems about Riemann surfaces.
Thu, 05 May 2016
17:30
L6

Resolution of singularities and definability in a globally subanalytic setting

Tamara Servi
(Paris 7)
Abstract

Given a collection F of holomorphic functions, we consider how to describe all the holomorphic functions locally definable from F. The notion of local definability of holomorphic functions was introduced by Wilkie, who gave a complete description of all functions locally definable from F in the neighbourhood of a generic point. We prove that this description is not complete anymore in the neighbourhood of non-generic points. More precisely, we produce three examples of holomorphic functions which each suggest that at least three new definable operations need to be added to Wilkie's description in order to capture local definability in its entirety. The construction illustrates the interaction between resolution of singularities and definability in the o-minimal setting. Joint work with O. Le Gal, G. Jones, J. Kirby.

Footprints of Loop I on cosmic microwave background maps
Hausegger, S Liu, H Mertsch, P Sarkar, S Journal of Cosmology and Astroparticle Physics volume 2016 issue 3 (10 Mar 2016)
Neutrino oscillation studies with IceCube-DeepCore
Aartsen, M Abraham, K Ackermann, M Sarkar, S Nuclear Physics B volume 908 161-177 (30 Mar 2016)
Searches for relativistic magnetic monopoles in IceCube
Aartsen, M Abraham, K Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Altmann, D Anderson, T Ansseau, I Archinger, M Arguelles, C Arlen, T Auffenberg, J Bai, X Barwick, S Baum, V Bay, R Beatty, J Tjus, J Becker, K Beiser, E Benabderrahmane, M Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, D Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, D Bohm, C Börner, M Bos, F Bose, D Böser, S Botner, O Braun, J Brayeur, L Bretz, H Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Clark, K European Physical Journal C issue 3 (01 Mar 2016)
Mon, 25 Apr 2016

12:00 - 13:00
L3

Yang-Mills Theory and the ABC Conjecture

Yang-Hui He
Abstract

We establish a correspondence between the ABC Conjecture and N=4 super-Yang-Mills theory. This is achieved by combining three ingredients:

(i) Elkies' method of mapping ABC-triples to elliptic curves in his demonstration that ABC implies Mordell/Faltings;

(ii) an explicit pair of elliptic curve and associated Belyi map given by Khadjavi-Scharaschkin; and

(iii) the fact that the bipartite brane-tiling/dimer model for a gauge theory with toric moduli space is a particular dessin d'enfant in the sense of Grothendieck. 
 

We explore this correspondence for the highest quality ABC-triples as well as large samples of random triples. The Conjecture itself is mapped to a statement about the fundamental domain of the toroidal compactification of the string realization of N=4 SYM.

Mon, 13 Jun 2016

16:00 - 17:00
L4

Enhancement of propagation in reaction-diffusion equations by a line of fast diffusion

Laurent Dietrich
(OxPDE, University of Oxford)
Abstract

we study a new mechanism of reaction-diffusion involving a line with fast diffusion, proposed to model the influence of transportation networks on biological invasions. 
We will be interested in the existence and uniqueness of traveling waves solutions, and especially focus on their velocity. We will show that it grows as the square root of the diffusivity on the line, generalizing and showing the robustness of a result by Berestycki, Roquejoffre and Rossi (2013), and provide a characterization of the growth ratio thanks to an hypoelliptic (a priori) degenerate system. 
Finally we will take a look at the dynamics and show that the waves attract a large class of initial data. In particular, we will shed light on a new mechanism of attraction which enables the waves to attract initial data with size independent of the diffusion on the line : this is a new result, in the sense than usually, enhancement of propagation has to be paid by strengthening the assumptions on the size of the initial data for invasion to happen.

Mon, 09 May 2016

16:00 - 17:00
L4

The wrinkling of a twisted ribbon

Ethan O'Brien
(Courant Institute)
Abstract

We explore a specific system in which geometry and loading conspire to generate fine-scale wrinkling. This system -- a twisted ribbon held with small tension -- was examined experimentally by Chopin and Kudrolli 
[Phys Rev Lett 111, 174302, 2013].

There is a regime where the ribbon wrinkles near its center. A recent paper by Chopin, D\'{e}mery, and Davidovitch models this regime using a von-K\'{a}rm\'{a}n-like 
variational framework [J Elasticity 119, 137-189, 2015]. Our contribution is to give upper and lower bounds for the minimum energy as the thickness tends to zero. Since the bounds differ by a thickness-independent prefactor, we have determined how the minimum energy scales with thickness. Along the way we find estimates on Sobolev norms of the minimizers, which provide some information on the character of the wrinkling. This is a joint work with  Robert V. Kohn in Courant Institute, NYU.

Subscribe to