Uncovering the mechanical secrets of the squirting cucumber
Box, F Moulton, D Vella, D Lowe, T Goriely, A Thorogood, C Proceedings of the National Academy of Sciences volume 121 issue 50 (25 Nov 2024)
The effect of dust on the propagation of a hydromagnetic solitary wave along the magnetic field in a cold collision-free plasma
Iqbal, Z Allen, J Causa, F Abbas, G Ridgway, W Koukouloyannis, V Physics of Plasmas volume 31 issue 10 102303 (01 Oct 2024)
Mon, 11 Nov 2024
17:00
L1

The Seventeenth Brooke Benjamin Lecture 2024: The Elusive Singularity

Professor Peter Constantin
(Princeton University)
Abstract

The Elusive Singularity

I will describe the open problems of singularity formation in incompressible fluids. I will discuss a list of related models, some results, and some more open problems.

Date: Monday, 11 November 2024 

Time: 5pm GMT

Location: Lecture Theatre 1, Mathematical Institute 

Speaker: Professor Peter Constantin            

Peter Constantin is the John von Neumann Professor of Mathematics and Applied and Computational Mathematics at Princeton University. Peter Constantin received his B.A and M.A. summa cum laude from the University of Bucharest, Faculty of Mathematics and Mechanics. He obtained his Ph.D. from The Hebrew University of Jerusalem under the direction of Shmuel Agmon.

Constantin’s work is focused on the analysis of PDE and nonlocal models arising in statistical and nonlinear physics. Constantin worked on scattering for Schr¨odinger operators, on finite dimensional aspects of the dynamics of Navier-Stokes equations, on blow up for models of Euler equations. He introduced active scalars, and, with Jean-Claude Saut, local smoothing for general dispersive PDE. Constantin worked on singularity formation in fluid interfaces, on turbulence shell models, on upper bounds for turbulent transport, on the inviscid limit, on stochastic representation of Navier-Stokes equations, on the Onsager conjecture. He worked on critical nonlocal dissipative equations, on complex fluids, and on ionic diffusion in fluids.

Constantin has advised thirteen graduate students in mathematics, and served in the committee of seven graduate students in physics. He mentored twenty-five postdoctoral associates. 

Constantin served as Chair of the Mathematics Department of the University of Chicago and as the Director of the Program in Applied and Computational Mathematics at Princeton University.

Constantin is a Fellow of the Institute of Physics, a SIAM Fellow, and Inaugural Fellow of the American Mathematical Society, a Fellow of the American Academy of Arts and Sciences and a member of the National Academy of Sciences

Mon, 25 Nov 2024
13:30
C4

The Evaporation of Charged Black Holes

Clément Virally
Abstract

Since Hawking first discovered that black holes radiate, the evaporation of black holes has been a subject of great interest. In this talk, based on [2411.03447], we review some recent results about the evaporation of charged (Reissner-Nordström) black holes. We consider in particular the difference between neutral and charged particle emission, and explain how this drives the black hole near extremality, as well as how evaporation is then changed in that limit.

Mon, 04 Nov 2024
13:30
C4

Type IIA string theory and homotopy theory

Matthew Yu
Abstract

Abstract: I will introduce and explain a new symmetry structure for type IIA string theory, called string^h. Using string^h I will explain  how some objects of stable homotopy theory relating to elliptic cohomology enter into type IIA string theory.

Axisymmetric membrane nano-resonators: a comparison of nonlinear reduced-order models
Palathingal, S Vella, D International Journal of Non-Linear Mechanics volume 168 (28 Oct 2024)
Thu, 14 Nov 2024

17:00 - 18:00
L3

The Borel monadic theory of order is decidable

Sven Manthe
(University of Bonn)
Abstract

The monadic second-order theory S1S of (ℕ,<) is decidable (it essentially describes ω-automata). Undecidability of the monadic theory of (ℝ,<) was proven by Shelah. Previously, Rabin proved decidability if the monadic quantifier is restricted to Fσ-sets.
We discuss decidability for Borel sets, or even σ-combinations of analytic sets. Moreover, the Boolean combinations of Fσ-sets form an elementary substructure. Under determinacy hypotheses, the proof extends to larger classes of sets.

Tue, 29 Oct 2024

14:00 - 15:00
C3

One, two, tree: counting trees in graphs and some applications

Karel Devriendt
(Mathematical Institute (University of Oxford))
Abstract

Kirchhoff's celebrated matrix tree theorem expresses the number of spanning trees of a graph as the maximal minor of the Laplacian matrix of the graph. In modern language, this determinantal counting formula reflects the fact that spanning trees form a regular matroid. In this talk, I will give a short historical overview of the tree-counting problem and a related quantity from electrical circuit theory: the effective resistance. I will describe a characterization of effective resistances in terms of a certain polytope and discuss some recent applications to discrete notions of curvature on graphs. More details can be found in the recent preprint: https://arxiv.org/abs/2410.07756

Tue, 22 Oct 2024

14:00 - 15:00
L5

Maria Pope: Uncovering Higher-Order Interactions in the Cortex: Applications of Multivariate Information Theory

Maria Pope
(Indiana University)
Abstract

Creating networks of statistical dependencies between brain regions is a powerful tool in neuroscience that has resulted in many new insights and clinical applications. However, recent interest in higher-order interactions has highlighted the need to address beyond-pairwise dependencies in brain activity. Multivariate information theory is one tool for identifying these interactions and is unique in its ability to distinguish between two qualitatively different modes of higher-order interactions: synergy and redundancy. I will present results from applying the O-information, the partial entropy decomposition, and the local O-information to resting state fMRI data. Each of these metrics indicate that higher-order interactions are widespread in the cortex, and further that they reveal different patterns of statistical dependencies than those accessible through pairwise methods alone. We find that highly synergistic subsystems typically sit between canonical functional networks and incorporate brain regions from several of these systems. Additionally, canonical networks as well as the interactions captured by pairwise functional connectivity analyses, are strongly redundancy-dominated. Finally, redundancy/synergy dominance varies in both space and time throughout an fMRI scan with notable recurrence of sets of brain regions engaging synergistically. As a whole, I will argue that higher-order interactions in the brain are an under-explored space that, made accessible with the tools of multivariate information theory, may offer novel insights.

Subscribe to