Mon, 25 Nov 2024
13:30
C4

The Evaporation of Charged Black Holes

Clément Virally
Abstract

Since Hawking first discovered that black holes radiate, the evaporation of black holes has been a subject of great interest. In this talk, based on [2411.03447], we review some recent results about the evaporation of charged (Reissner-Nordström) black holes. We consider in particular the difference between neutral and charged particle emission, and explain how this drives the black hole near extremality, as well as how evaporation is then changed in that limit.

Mon, 04 Nov 2024
13:30
C4

Type IIA string theory and homotopy theory

Matthew Yu
Abstract

Abstract: I will introduce and explain a new symmetry structure for type IIA string theory, called string^h. Using string^h I will explain  how some objects of stable homotopy theory relating to elliptic cohomology enter into type IIA string theory.

Axisymmetric membrane nano-resonators: a comparison of nonlinear reduced-order models
Palathingal, S Vella, D International Journal of Non-Linear Mechanics volume 168 (28 Oct 2024)
Thu, 14 Nov 2024

17:00 - 18:00
L3

The Borel monadic theory of order is decidable

Sven Manthe
(University of Bonn)
Abstract

The monadic second-order theory S1S of (ℕ,<) is decidable (it essentially describes ω-automata). Undecidability of the monadic theory of (ℝ,<) was proven by Shelah. Previously, Rabin proved decidability if the monadic quantifier is restricted to Fσ-sets.
We discuss decidability for Borel sets, or even σ-combinations of analytic sets. Moreover, the Boolean combinations of Fσ-sets form an elementary substructure. Under determinacy hypotheses, the proof extends to larger classes of sets.

Tue, 29 Oct 2024

14:00 - 15:00
C3

One, two, tree: counting trees in graphs and some applications

Karel Devriendt
(Mathematical Institute (University of Oxford))
Abstract

Kirchhoff's celebrated matrix tree theorem expresses the number of spanning trees of a graph as the maximal minor of the Laplacian matrix of the graph. In modern language, this determinantal counting formula reflects the fact that spanning trees form a regular matroid. In this talk, I will give a short historical overview of the tree-counting problem and a related quantity from electrical circuit theory: the effective resistance. I will describe a characterization of effective resistances in terms of a certain polytope and discuss some recent applications to discrete notions of curvature on graphs. More details can be found in the recent preprint: https://arxiv.org/abs/2410.07756

Tue, 22 Oct 2024

14:00 - 15:00
L5

Maria Pope: Uncovering Higher-Order Interactions in the Cortex: Applications of Multivariate Information Theory

Maria Pope
(Indiana University)
Abstract

Creating networks of statistical dependencies between brain regions is a powerful tool in neuroscience that has resulted in many new insights and clinical applications. However, recent interest in higher-order interactions has highlighted the need to address beyond-pairwise dependencies in brain activity. Multivariate information theory is one tool for identifying these interactions and is unique in its ability to distinguish between two qualitatively different modes of higher-order interactions: synergy and redundancy. I will present results from applying the O-information, the partial entropy decomposition, and the local O-information to resting state fMRI data. Each of these metrics indicate that higher-order interactions are widespread in the cortex, and further that they reveal different patterns of statistical dependencies than those accessible through pairwise methods alone. We find that highly synergistic subsystems typically sit between canonical functional networks and incorporate brain regions from several of these systems. Additionally, canonical networks as well as the interactions captured by pairwise functional connectivity analyses, are strongly redundancy-dominated. Finally, redundancy/synergy dominance varies in both space and time throughout an fMRI scan with notable recurrence of sets of brain regions engaging synergistically. As a whole, I will argue that higher-order interactions in the brain are an under-explored space that, made accessible with the tools of multivariate information theory, may offer novel insights.

Martin invariants
Panzer, E
Wed, 20 Nov 2024
17:00
Lecture Theatre 1, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG

Chance, luck, and ignorance: how to put our uncertainty into numbers - David Spiegelhalter

David Spiegelhalter
(University of Cambridge)
Further Information

We all have to live with uncertainty about what is going to happen, what has happened, and why things turned out how they did.  We attribute good and bad events as ‘due to chance’, label people as ‘lucky’, and (sometimes) admit our ignorance.  I will show how to use the theory of probability to take apart all these ideas, and demonstrate how you can put numbers on your ignorance, and then measure how good those numbers are. Along the way we will look at three types of luck, and judge whether Derren Brown was lucky or unlucky when he was filmed flipping ten Heads in a row.

David Spiegelhalter was Cambridge University's first Winton Professor of the Public Understanding of Risk. He has appeared regularly on television and radio and is the author of several books, the latest of which is The Art of Uncertainty: How to Navigate Chance, Ignorance, Risk and Luck (Penguin, September 2024).

Please email @email to register to attend in person.

The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Wednesday 11 December at 5-6pm and any time after (no need to register for the online version).

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Thu, 24 Oct 2024
16:00
L6

COW SEMINAR: Derived symmetries for crepant resolutions of hypersurfaces

Will Donovan
(Tsinghua)
Abstract

Given a singularity with a crepant resolution, a symmetry of the derived 
category of coherent sheaves on the resolution may often be constructed 
using the formalism of spherical functors. I will introduce this, and 
new work (arXiv:2409.19555) on general constructions of such symmetries 
for hypersurface singularities. This builds on previous results with 
Segal, and is inspired by work of Bodzenta-Bondal.

Subscribe to