Scaling limit of a weakly asymmetric simple exclusion process in the framework of regularity structures
Abstract
15:00
The distribution of zeroes of modular forms
Abstract
I will discuss old and new results about the distribution of zeros of modular forms, and relation to Quantum Unique Ergodicity. It is known that a modular form of weight k has about k/12 zeros in the fundamental domain . A classical question in the analytic theory of modular forms is “can we locate the zeros of a distinguished family of modular forms?”. In 1970, F. Rankin and Swinnerton-Dyer proved that the zeros of the Eisenstein series all lie on the circular part of the boundary of the fundamental domain. In the beginning of this century, I discovered that for cuspidal Hecke eigenforms, the picture is very different - the zeros are not localized, and in fact become uniformly distributed in the fundamental domain. Very recently, we have investigated other families of modular forms, such as the Miller basis (ZR 2024, Roei Raveh 2025, Adi Zilka 2026), Poincare series (RA Rankin 1982, Noam Kimmel 2025) and theta functions (Roei Raveh 2026), finding a variety of possible distributions of the zeroes.
Joint seminar with Number Theory.
Approximating Processes on Complex Networks
Abstract
Level Sets of Persistent Homology for Point Clouds
Abstract
Persistent homology (PH) is an operation which, loosely speaking, describes the different holes in a point cloud via a collection of intervals called a barcode. The two most frequently used variants of persistent homology for point clouds are called Čech PH and Vietoris-Rips PH. How much information is lost when we apply these kinds of PH to a point cloud? We investigate this question by studying the subspace of point clouds with the same barcodes under these operations. We establish upper and lower bounds on the dimension of this space, and find that the question of when the persistence map is identifiable has close ties to rigidity theory. For example, we show that a generic point cloud being locally identifiable under Vietoris-Rips persistence is equivalent to a certain graph being rigid on the same point cloud.