Thu, 06 Feb 2025

14:00 - 15:00
Lecture Room 3

Deflation Techniques for Finding Multiple Local Minima of a Nonlinear Least Squares Problem

Marcus Webb
(University of Manchester)
Abstract

Deflation is a technique to remove a solution to a problem so that other solutions to this problem can subsequently be found. The most prominent instance is deflation we see in eigenvalue solvers, but recent interest has been in deflation of rootfinding problems from nonlinear PDEs with many isolated solutions (spearheaded by Farrell and collaborators). 

 

In this talk I’ll show you recent results on deflation techniques for optimisation algorithms with many local minima, focusing on the Gauss—Newton algorithm for nonlinear least squares problems.  I will demonstrate advantages of these techniques instead of the more obvious approach of applying deflated Newton’s method to the first order optimality conditions and present some proofs that these algorithms will avoid the deflated solutions. Along the way we will see an interesting generalisation of Woodbury’s formula to least squares problems, something that should be more well known in Numerical Linear Algebra (joint work with Güttel, Nakatsukasa and Bloor Riley).

 

Main preprint: https://arxiv.org/abs/2409.14438

WoodburyLS preprint: https://arxiv.org/abs/2406.15120

Wed, 06 Nov 2024
16:00
L6

Presentations of Bordism Categories

Filippos Sytilidis
(University of Oxford)
Abstract

A topological quantum field theory (TQFT) is a functor from a category of bordisms to a category of vector spaces. Classifying low-dimensional TQFTs often involves considering presentations of bordism categories in terms of generators and relations. In this talk, we will introduce these concepts and outline a program for obtaining such presentations using Morse–Cerf theory.

Kazhdan constants for Chevalley groups over the integers
Kaluba, M Kielak, D Revista Matemática Iberoamericana volume 41 issue 4 1253-1269 (14 Nov 2024)
TE-PAI: exact time evolution by sampling random circuits
Kiumi, C Koczor, B (22 Oct 2024)
Rigidity of the Torelli subgroup in $\mathrm{Out}(F_{N})$
Hensel, S Horbez, C Wade, R Revista Matemática Iberoamericana (25 Oct 2024)
Photo
Professor Dominic Joyce has been appointed Savilian Professor of Geometry here in Oxford. Dominic will be the 21st holder of the Savilian Chair. Established in 1619 by Sir Henry Savile, it has been held by many top mathematicians - including John Wallis (who introduced the ∞ notation), Edmond Halley (after whom Halley's comet is named), Edward Titchmarsh, and Sir Michael Atiyah.
Tue, 26 Nov 2024

15:30 - 16:30
Online

Optimizing the Campos-Griffiths-Morris-Sahasrabudhe upper bound on Ramsey numbers

Sergey Norin
(McGill University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In a recent breakthrough Campos, Griffiths, Morris and Sahasrabudhe obtained the first exponential improvement of the upper bound on the classical Ramsey numbers since 1935. I will outline a reinterpretation of their proof, replacing the underlying book algorithm with a simple inductive statement. In particular, I will present a complete proof of an improved upper bound on the off-diagonal Ramsey numbers and describe the main steps involved in improving their upper bound for the diagonal Ramsey numbers to $R(k,k)\le(3.8)^k$ for sufficiently large $k$.

Based on joint work with Parth Gupta, Ndiame Ndiaye, and Louis Wei.

Tue, 26 Nov 2024

14:00 - 15:00
Online

Boundedness of discounted tree sums

Élie Aïdékon
(Fudan University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Let $(V(u))$ be a branching random walk and $(\eta(u))$ be i.i.d marks on the vertices. To each path $\xi$ of the tree, we associate the discounted sum $D(\xi)$ which is the sum of the $\exp(V(u))\eta_u$ along the path. We study conditions under which $\sup_\xi D(\xi)$ is finite, answering an open question of Aldous and Bandyopadhyay. We will see that this problem is related to the study of the local time process of the branching random walk along a path. It is a joint work with Yueyun Hu and Zhan Shi.

Tue, 12 Nov 2024

14:00 - 15:00
L4

On forbidden configurations in point-line incidence graphs

Nora Frankl
(Open University)
Abstract

The celebrated Szemeredi-Trotter theorem states that the maximum number of incidences between $n$ points and $n$ lines in the plane is $\mathcal{O}(n^{4/3})$, which is asymptotically tight.

Solymosi conjectured that this bound drops to $o(n^{4/3})$ if we exclude subconfigurations isomorphic to any fixed point-line configuration. We describe a construction disproving this conjecture. On the other hand, we prove new upper bounds on the number of incidences for configurations that avoid certain subconfigurations. Joint work with Martin Balko.

Subscribe to