The delivery of this year’s Mathematics Admissions Test (MAT) has caused widespread distress and difficulties, most especially for the candidates themselves. The Oxford Mathematical Institute would like to apologise for this distress, and assure everyone that our priority is to ensure that no one is disadvantaged during the admissions process. We would also like to thank everyone who has provided feedback so far, whether via the special consideration forms or via email and social media.
Oxford Mathematics and Balliol College will be hosting an afternoon to celebrate the life and contributions of Vicky Neale who died in May of this year.
November 11, 2023, 14.00–16.30
Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG
If you would like to join us, please register here
You can leave your memories of Vicky here.
18:00
Frontiers in Quantitative Finance: Large Language Models for Quantitative Finance
Abstract
This event is free but requires prior registration. To register, please click here.
Abstract
In the contemporary AI landscape, Large Language Models (LLMs) stand out as game-changers. They redefine not only how we interact with computers via natural language but also how we identify and extract insights from vast, complex datasets. This presentation delves into the nuances of training and customizing LLMs, with a focus on their applications to quantitative finance.
About the speaker
Ioana Boier is a senior principal solutions architect at Nvidia. Her background is in Quantitative Finance and Computer Science. Prior to joining Nvidia, she was the Head of Quantitative Portfolio Solutions at Alphadyne Asset Management, and led research teams at Citadel LLC, BNP Paribas, and IBM T.J. Watson Research. She has a Ph.D. in Computer Science from Purdue University and is the author of over 30 peer-reviewed publications, 15 patents, and the winner of several awards for applied research delivered into products.
View her LinkedIn page
Frontiers in Quantitative Finance is brought to you by the Oxford Mathematical and Computational Finance Group and sponsored by CitiGroup and Mosaic SmartData.
15:00
A gentle introduction to Ricci flow
Abstract
Richard Hamilton introduced the Ricci flow as a way to study the Poincaré conjecture, which says that every simply connected, compact three-manifold is homeomorphic to the three-sphere. In this talk, we will introduce the Ricci flow in a way that is accessible to anyone with basic knowledge of Riemannian geometry. We will give some examples, discuss finite time singularities, and give an application to a theorem of Hamilton which says that every compact Riemannian 3-manifold with positive Ricci curvature admits a metric of constant positive sectional curvature.
15:00
Compactness problems in new gauge theories
Abstract
Two areas of current research in Mathematical Gauge Theory are the study of higher dimensional instantons on manifolds with special holonomy (for example, Calabi-Yau three folds, G2 and Spin(7) manifolds), and low dimensional gauge theories (for example the Kapustin-Witten, Haydys-Witten and ADHM Seiberg-Witten equations). A common feature of these two sets of theories is that the moduli spaces of solutions are in general not compact. In both cases, compactness issues arise because of solutions to a certain non-linear equation called the Fueter equation. In this talk, I'll explain how this non compactness gives a relationship between these high and low dimensional gauge theories.
15:00
Generalising fat bundles and positive curvature
Abstract
Alan Weinstein, introduced the concept of "fat bundle" as a tool to understand when the total space of a fiber bundle with totally geodesic fibers allows a metric with positive sectional curvature.
In recent times, certain weaker notions than the condition of having a metric with positive sectional curvature have been studied due to the apparent scarcity of spaces that meet this condition. Positive kth-intermediate Ricci curvature (Rick > 0) on a Riemannian manifold Mn is a condition that bridges the gap between positive sectional curvature and positive Ricci curvature. Indeed, when k = 1, this condition corresponds to positive sectional curvature, and when k = n−1, it corresponds to positive Ricci curvature.
In this talk, I will discuss an ongoing project with Miguel Domínguez Vázquez, David González-Álvaro, and Jason DeVito, which aims to create new examples of compact Riemannian manifolds with Ric2 > 0. We achieve this by employing a certain generalisation of the "fat bundle" concept.