For musicologists, the period between rock & roll and the Beatles first single in 1962 (Love Me Do) is often seen as rather quaint, but Runaway is certainly not quaint with Del's vocals and the instrumental break from the Musitron, an instrument, according to Wiki, based on the Clavioline, a forerunner to the synthesizer invented by Constant Martin in France in 1947. Check it out.

The mid-term elections in the USA might be close, but the vote for the Oxford Mathematics Christmas Party certainly wasn't.

Friday 9th December - 70%

Friday 16th December - 30%

So see you at 4pm on 9th December. 

(image of the Fezziwigs' Christmas party from the original drawings by John Leech from Charles Dickens' A Christmas Carol) 

Mon, 05 Dec 2022
16:00
L4

Elliptic curves with isomorphic mod 12 Galois representations

Samuel Frengley
(University of Cambridge (DPMMS))
Abstract

A pair of elliptic curves is said to be $N$-congruent if their mod $N$ Galois representations are isomorphic. We will discuss a construction of the moduli spaces of $N$-congruent elliptic curves, due to Kani--Schanz, and describe how this can be exploited to compute explicit equations. Finally we will outline a proof that there exist infinitely many pairs of elliptic curves with isomorphic mod $12$ Galois representations, building on previous work of Chen and Fisher (in the case where the underlying isomorphism of torsion subgroups respects the Weil pairing).

Mon, 14 Nov 2022
16:00
L4

The Weil bound

Jared Duker Lichtman
(University of Oxford)
Abstract

The Riemann hypothesis (RH) is one of the great open problems in
mathematics. It arose from the study of prime numbers in an analytic
context, and—as often occurs in mathematics—developed analogies in an
algebraic setting, leading to the influential Weil conjectures. RH for
curves over finite fields was proven in the 1940’s by Weil using
algebraic-geometric methods, and later reproven by Stepanov and
Bombieri by elementary means. In this talk, we use RH for curves to
prove the Weil bound for certain (Kloosterman) exponential sums, which
in turn is a fundamental tool in the study of prime numbers.

Mon, 21 Nov 2022
16:00
L4

Orienteering with one endomorphism

Mingjie Chen
(University of Birmingham)
Abstract

Isogeny-based cryptography is a candidate for post-quantum cryptography. The underlying hardness of isogeny-based protocols is the problem of computing endomorphism rings of supersingular elliptic curves, which is equivalent to the path-finding problem on the supersingular isogeny graph. Can path-finding be reduced to knowing just one endomorphism? An endomorphism gives an explicit orientation of a supersingular elliptic curve. In this talk, we use the volcano structure of the oriented supersingular isogeny graph to take ascending/descending/horizontal steps on the graph and deduce path-finding algorithms to an initial curve. This is joint work with Sarah Arpin, Kristin E. Lauter, Renate Scheidler, Katherine E. Stange and Ha T. N. Tran.

Geometric Flows of $G_2$-Structures on 3-Sasakian 7-Manifolds
Kennon, A Lotay, J Journal of Geometry and Physics volume 187 (15 Mar 2023) http://arxiv.org/abs/2210.12962v1
A model of the weathering crust and microbial activity on an ice-sheet surface
Woods, T Hewitt, I (28 Oct 2022)
Thu, 23 Feb 2023

13:00 - 14:00
L4

Failure of the CD condition in sub-Riemannian and sub-Finsler geometry

Mattia Magnabosco
(Hausdorff Center for Mathematics)
Abstract

The Lott-Sturm-Villani curvature-dimension condition CD(K,N) provides a synthetic notion for a metric measure space to have curvature bounded from below by K and dimension bounded from above by N. It was proved by Juillet that the CD(K,N) condition is not satisfied in a large class of sub-Riemannian manifolds, for every choice of the parameters K and N. In a joint work with Tommaso Rossi, we extended this result to the setting of almost-Riemannian manifolds and finally it was proved in full generality by Rizzi and Stefani. In this talk I present the ideas behind the different strategies, discussing in particular their possible adaptation to the sub-Finsler setting. Lastly I show how studying the validity of the CD condition in sub-Finsler Carnot groups could help in proving rectifiability of CD spaces.

Chris and Christoph

Algebraic topology is the study of the continuous shape of spaces by the discrete means of algebra. The beginning of modern algebraic topology can be traced back to an insight of Pontryagin in the 1930s which relates the global smooth geometry of manifolds to algebraic invariants associated to the local symmetries of those manifolds - this relation converts something smooth and geometric (called a manifold, potentially endowed with further structure) to something algebraic that can be written down with symbols and formulas, i.e.

Subscribe to