15:30
Simple homotopy types of 4-manifolds
Abstract
Two CW-complexes are simple homotopy equivalent if they are related by a sequence of collapses and expansions of cells. It implies homotopy equivalent as is implied by homeomorphic. This notion proved extremely useful in manifold topology and is central to the classification of non-simply connected manifolds up to homeomorphism. I will present the first examples of two 4-manifolds which are homotopy equivalent but not simple homotopy equivalent, as well as in all higher even dimensions. The examples are constructed using surgery theory and the s-cobordism theorem, and are distinguished using methods from algebraic number theory and algebraic K-theory. I will also discuss a number of new directions including progress on classifying the possible fundamental groups for which examples exist. This is joint work with Csaba Nagy and Mark Powell.
CANCELLED -- Classifying rigid Frobenius algebras in Dijkgraaf-Witten categories and their local modules
Abstract
THIS TALK IS CANCELLED DUE TO ILLNESS -- In this talk I will present classification results for rigid Frobenius algebras in Dijkgraaf–Witten categories ℨ( Vec(G)ᵚ ) over a field of arbitrary characteristic, generalising existing results by Davydov-Simmons. For this purpose, we provide a braided Frobenius monoidal functor from ℨ ( Vect(H)ᵚˡᴴ ) to ℨ( Vec(G)ᵚ ) for any subgroup H of G. I will also discuss about their categories of local modules, which are modular tensor categories by results of Kirillov–Ostrik in the semisimple case and Laugwitz–Walton in the general case. Joint work with Robert Laugwitz (Nottingham) and Sam Hannah (Cardiff).
Oxford Mathematician James Maynard has been awarded a 2023 New Horizons Prize for Early-Career Achievements in Mathematics in recognition of his multiple contributions to analytic number theory, and in particular to the distribution of prime numbers.
14:00
CDT in Mathematics of Random Systems December Workshop 2022
Abstract
2:00 Julian Sieber
On the (Non-)stationary density of fractional SDEs
I will present a novel approach for studying the density of SDEs driven by additive fractional Brownian motion. It allows us to establish smoothness and Gaussian-type upper and lower bounds for both the non-stationary as well as the stationary density. While the stationary density has not been studied in any previous works, the former was the subject of multiple articles by Baudoin, Hairer, Nualart, Ouyang, Pillai, Tindel, among others. The common theme of all of these works is to obtain the results through bounds on the Malliavin derivative. The main disadvantage of this approach lies in the non-optimal regularity conditions on the SDE's coefficients. In case of additive noise, the equation is known to be well-posed if the drift is merely sublinear and measurable (resp. Holder continuous). Relying entirely on classical methods of stochastic analysis (avoiding any Malliavin calculus), we prove the aforementioned Gaussian-type bounds under optimal regularity conditions.
The talk is based on a joint work with Xue-Mei Li and Fabien Panloup.
2:45 Thomas Tendron
A central limit theorem for a spatial logistic branching process in the slow coalescence regime
We study the scaling limits of a spatial population dynamics model which describes the sizes of colonies located on the integer lattice, and allows for branching, coalescence in the form of local pairwise competition, and migration. When started near the local equilibrium, the rates of branching and coalescence in the particle system are both linear in the local population size - we say that the coalescence is slow. We identify a rescaling of the equilibrium fluctuations process under which it converges to an infinite dimensional Ornstein-Uhlenbeck process with alpha-stable driving noise if the offspring distribution lies in the domain of attraction of an alpha-stable law with alpha between one and two.
3:30 Break
4:00-5:30 Careers Discussion
Immersive Finance, Founder, and Oxford Mathematics, Visiting Lecturer in Mathematical Finance |
Oxford Mathematics, Professor of Numerical Optimisation |
Smith Institute, Chief Technical Officer |
Tesco, Data Science Manager |
14:30
CDT in Mathematics of Random Systems October Workshop 2022
Abstract
2:30 -3.00 Will Turner (CDT Student, Imperial College London)
Topologies on unparameterised path space
The signature of a path is a non-commutative exponential introduced by K.T. Chen in the 1950s, and appears as a central object in the theory of rough paths developed by T. Lyons in the 1990s. For continuous paths of bounded variation, the signature may be realised as a sequence of iterated integrals, which provides a succinct summary for multimodal, irregularly sampled, time-ordered data. The terms in the signature act as an analogue to monomials for finite dimensional data: linear functionals on the signature uniformly approximate any compactly supported continuous function on unparameterised path space (Levin, Lyons, Ni 2013). Selection of a suitable topology on the space of unparameterised paths is then key to the practical use of this approximation theory. We present new results on the properties of several candidate topologies for this space. If time permits, we will relate these results to two classical models: the fixed-time solution of a controlled differential equation, and the expected signature model of Levin, Lyons, and Ni. This is joint work with Thomas Cass.
3.05 -3.35 Ross Zhang (CDT Student, University of Oxford)
Random vortex dynamics via functional stochastic differential equations
The talk focuses on the representation of the three-dimensional (3D) Navier-Stokes equations by a random vortex system. This new system could give us new numerical schemes to efficiently approximate the 3D incompressible fluid flows by Monte Carlo simulations. Compared with the 2D Navier-Stokes equation, the difficulty of the 3D Navier-Stokes equation lies in the stretching of vorticity. To handle the stretching term, a system of stochastic differential equations is coupled with a functional ordinary differential equation in the 3D random vortex system. Two main tools are developed to derive the new system: the first is the investigation of pinned diffusion measure, which describes the conditional distribution of a time reversal diffusion, and the second is a forward-type Feynman Kac formula for nonlinear PDEs, which utilizes the pinned diffusion measure to delicately overcome the time reversal issue in PDE. Although the main focus of the research is the Navier-stokes equation, the tools developed in this research are quite general. They could be applied to other nonlinear PDEs as well, thereby providing respective numerical schemes.
3.40 - 4.25pm Dr Cris Salvi (Imperial College London)
Signature kernel methods
Kernel methods provide a rich and elegant framework for a variety of learning tasks including supervised learning, hypothesis testing, Bayesian inference, generative modelling and scientific computing. Sequentially ordered information often arrives in the form of complex streams taking values in non-trivial ambient spaces (e.g. a video is a sequence of images). In these situations, the design of appropriate kernels is a notably challenging task. In this talk, I will outline how rough path theory, a modern mathematical framework for describing complex evolving systems, allows to construct a family of characteristic kernels on pathspace known as signature kernels. I will then present how signature kernels can be used to develop a variety of algorithms such as two-sample hypothesis and (conditional) independence tests for stochastic processes, generative models for time series and numerical methods for path-dependent PDEs.
4.30 Refreshments