14:00
Partitioned and multirate training of neural networks
Abstract
I will discuss the use of partitioned schemes for neural networks. This work is in the tradition of multrate numerical ODE methods in which different components of system are evolved using different numerical methods or with different timesteps. The setting is the training tasks in deep learning in which parameters of a hierarchical model must be found to describe a given data set. By choosing appropriate partitionings of the parameters some redundant computation can be avoided and we can obtain substantial computational speed-up. I will demonstrate the use of the procedure in transfer learning applications from image analysis and natural language processing, showing a reduction of around 50% in training time, without impairing the generalization performance of the resulting models. This talk describes joint work with Tiffany Vlaar.