Mon, 07 Mar 2022

15:30 - 16:30
L3

Positivity preserving truncated Euler-Maruyama method for stochastic Lotka-Volterra model

XUERONG MAO
(University of Strathclyde)
Abstract

Most of SDE models in epidemics, ecology, biology, finance etc. are highly nonlinear and do not have explicit solutions. Monte Carlo simulations have played a more and more important role. This talk will point out several well-known numerical schemes may fail to preserve the positivity or moment of the solutions to SDE models. Reliable numerical schemes are therefore required to be designed so that the corresponding Monte Carlo simulations can be trusted. The talk will then concentrate on new numerical schemes for the well-known stochastic Lotka--Volterra model for interacting multi-species. This model has some typical features: highly nonlinear, positive solution and multi-dimensional. The known numerical methods including the tamed/truncated Euler-Maruyama (EM) applied to it do not preserve its positivity. The aim of this talk is to modify the truncated EM to establish a new positive preserving truncated EM (PPTEM).

 

Mon, 31 Jan 2022

15:30 - 16:30
L3

Distribution dependent SDEs driven by additive continuous and fractional Brownian noise

AVI MAYORCAS
(University of Cambridge)
Abstract

Distribution dependent equations (or McKean—Vlasov equations) have found many applications to problems in physics, biology, economics, finance and computer science. Historically, equations with either Brownian noise or zero noise have received the most attention; many well known results can be found in the monographs by A. Sznitman and F. Golse. More recently, attention has been paid to distribution dependent equations driven by random continuous noise, in particular the recent works by M. Coghi, J-D. Deuschel, P. Friz & M. Maurelli, with applications to battery modelling. Furthermore, the phenomenon of regularisation by noise has received new attention following the works of D. Davie and M. Gubinelli & R. Catellier using techniques of averaging along rough trajectories. Building on these ideas I will present recent joint work with L. Galeati and F. Harang concerning well-posedness and stability results for distribution dependent equations driven first by merely continuous noise and secondly driven by fractional Brownian motion.

 

Tue, 08 Feb 2022

14:00 - 15:00
Virtual

FFTA: Spreading processes on metapopulation models with node2vec mobility

Lingqi Meng
(The State University of New York at Buffalo)
Abstract

A metapopulation model, composed of subpopulations and pairwise connections, is a particle-network framework for epidemic dynamics study. Individuals are well-mixed within each subpopulation and migrate from one subpopulation to another, obeying a given mobility rule. While different mobility rules in metapopulation models have been studied, few efforts have been made to compare the effects of simple (i.e., unbiased) random walks and more complex mobility rules. In this talk, we study susceptible-infectious-susceptible (SIS) dynamics in a metapopulation model, in which individuals obey a second-order parametric random-walk mobility rule called the node2vec. We transform the node2vec mobility rule to a first-order Markov chain whose state space is composed of the directed edges and then derive the epidemic threshold. We find that the epidemic threshold is larger for various networks when individuals avoid frequent backtracking or visiting a neighbor of the previously visited subpopulation than when individuals obey the simple random walk. The amount of change in the epidemic threshold induced by the node2vec mobility is generally not as significant as, but is sometimes comparable with, the one induced by the change in the diffusion rate for individuals.

arXiv links: https://arxiv.org/abs/2006.04904 and https://arxiv.org/abs/2106.08080

Mon, 07 Mar 2022

16:00 - 17:00
C2

TBA

Benjamin Bedert
Mon, 28 Feb 2022

16:00 - 17:00
C4

Joint moments of characteristic polynomials of random unitary matrices

Arun Soor
Abstract

The moments of Hardy’s function have been of interest to number theorists since the early 20th century, and to random matrix theorists especially since the seminal work of Keating and Snaith, who were able to conjecture the leading order behaviour of all moments. Studying joint moments offers a unified approach to both moments and derivative moments. In his 2006 thesis, Hughes made a version of the Keating-Snaith conjecture for joint moments of Hardy’s function. Since then, people have been calculating the joint moments on the random matrix side. I will outline some recent progress in these calculations. This is joint work with Theo Assiotis, Benjamin Bedert, and Mustafa Alper Gunes.

Mon, 21 Feb 2022

16:00 - 17:00
C2

TBA

Julia Stadlmann
Mon, 14 Feb 2022

16:00 - 17:00
C4

TBA

Mon, 07 Feb 2022

16:00 - 17:00
C2

TBA

Mon, 31 Jan 2022

16:00 - 17:00
L5

The Probabilistic Zeta Function of a Finite Lattice

Besfort Shala
Abstract

In this talk, we present our study of Brown’s definition of the probabilistic zeta function of a finite lattice, and propose a natural alternative that may be better-suited for non-atomistic lattices. The probabilistic zeta function admits a general Dirichlet series expression, which need not be ordinary. We investigate properties of the function and compute it on several examples of finite lattices, establishing connections with well-known identities. Furthermore, we investigate when the series is an ordinary Dirichlet series. Since this is the case for coset lattices, we call such lattices coset-like. In this regard, we focus on partition lattices and d-divisible partition lattices and show that they typically fail to be coset-like. We do this by using the prime number theorem, establishing a connection with number theory.

Mon, 24 Jan 2022

16:00 - 17:00
C2

TBA

Yifan Jing
Subscribe to