Fri, 04 Mar 2022

15:00 - 16:00
L6

Open questions on protein topology in its natural environment.

Christopher Prior
(Durham University)
Abstract

Small angle x-ray scattering is one of the most flexible and readily available experimental methods for obtaining information on the structure of proteins in solution. In the advent of powerful predictive methods such as the alphaFold and rossettaFold algorithms, this information has become increasingly in demand, owing to the need to characterise the more flexible and varying components of proteins which resist characterisation by these and more standard experimental techniques. To deal with structures about little of which is known a parsimonious method of representing the tertiary fold of a protein backbone as a discrete curve has been developed. It represents the fundamental local Ramachandran constraints through a pair of parameters and is able to generate millions of potentially realistic protein geometries in a short space of time. The data obtained from these methods provides a treasure trove of information on the potential range of topological structures available to proteins, which is much more constrained that that available to self-avoiding walks, but still far more complex than currently understood from existing data. I will introduce this method and its considerations then attempt to pose some questions I think topological data analysis might help answer. Along the way I will ask why roadies might also help give us some insight….

Fri, 25 Feb 2022

15:00 - 16:00
L6

Homotopy, Homology, and Persistent Homology using Cech’s Closure Spaces

Peter Bubenik
(University of Florida)
Abstract

We use Cech closure spaces, also known as pretopological spaces, to develop a uniform framework that encompasses the discrete homology of metric spaces, the singular homology of topological spaces, and the homology of (directed) clique complexes, along with their respective homotopy theories. We obtain nine homology and six homotopy theories of closure spaces. We show how metric spaces and more general structures such as weighted directed graphs produce filtered closure spaces. For filtered closure spaces, our homology theories produce persistence modules. We extend the definition of Gromov-Hausdorff distance to filtered closure spaces and use it to prove that our persistence modules and their persistence diagrams are stable. We also extend the definitions Vietoris-Rips and Cech complexes to closure spaces and prove that their persistent homology is stable.

This is joint work with Nikola Milicevic.

Fri, 11 Feb 2022

15:00 - 16:00
L2

Topology-Based Graph Learning

Bastian Rieck
(Helmholtz Zentrum München)
Abstract

Topological data analysis is starting to establish itself as a powerful and effective framework in machine learning , supporting the analysis of neural networks, but also driving the development of novel algorithms that incorporate topological characteristics. As a problem class, graph representation learning is of particular interest here, since graphs are inherently amenable to a topological description in terms of their connected components and cycles. This talk will provide
an overview of how to address graph learning tasks using machine learning techniques, with a specific focus on how to make such techniques 'topology-aware.' We will discuss how to learn filtrations for graphs and how to incorporate topological information into modern graph neural networks, resulting in provably more expressive algorithms. This talk aims to be accessible to an audience of TDA enthusiasts; prior knowledge of machine learning is helpful but not required.

Fri, 04 Feb 2022

11:00 - 12:00
L6

Computing the Extended Persistent Homology Transform of binary images

Katharine Turner
(Australian National University)
Further Information

PLEASE NOTE this seminar will be at 11am instead of 3pm.

Abstract

The Persistent Homology Transform, and the Euler Characteristic Transform are topological analogs of the Radon transform that can be used in statsistical shape analysis. In this talk I will consider an interesting variant called the Extended Persistent Homology Transform (XPHT) which replaces the normal persistent homology with extended persistent homology. We are particularly interested in the application of the XPHT to binary images. This paper outlines an algorithm for efficient calculation of the XPHT exploting relationships between the PHT of the boundary curves to the XPHT of the foreground.

Fri, 28 Jan 2022

15:00 - 16:00
L6

Topological Tools for Signal Processing

Sarah Tymochko
(Michigan State University)
Abstract

Topological data analysis (TDA) is a field with tools to quantify the shape of data in a manner that is concise and robust using concepts from algebraic topology. Persistent homology, one of the most popular tools in TDA, has proven useful in applications to time series data, detecting shape that changes over time and quantifying features like periodicity. In this talk, I will present two applications using tools from TDA to study time series data: the first using zigzag persistence, a generalization of persistent homology, to study bifurcations in dynamical systems and the second, using the shape of weighted, directed networks to distinguish periodic and chaotic behavior in time series data.

Fri, 21 Jan 2022

15:00 - 16:00
L6

A Multivariate CLT for Dissociated Sums with Applications to Random Complexes

Tadas Temčinas
(Mathematical Institute)
Abstract

Acyclic partial matchings on simplicial complexes play an important role in topological data analysis by facilitating efficient computation of (persistent) homology groups. Here we describe probabilistic properties of critical simplex counts for such matchings on clique complexes of Bernoulli random graphs. In order to accomplish this goal, we generalise the notion of a dissociated sum to a multivariate setting and prove an abstract multivariate central limit theorem using Stein's method. As a consequence of this general result, we are able to extract central limit theorems not only for critical simplex counts, but also for generalised U-statistics (and hence for clique counts in Bernoulli random graphs) as well as simplex counts in the link of a fixed simplex in a random clique complex.

Thu, 10 Mar 2022

15:00 - 16:00
C2

Gauge theories in 4, 8 and 5 dimensions

Alfred Holmes
(University of Oxford)
Abstract

In the 1980s, gauge theory was used to provide new invariants (up to
diffeomorphism) of orientable four dimensional manifolds, by counting
solutions of certain equations up to to a choice of gauge. More
recently, similar techniques have been used to study manifolds of
different dimensions, most notably on Spin(7) and G_2 manifolds. Using
dimensional reduction, one can find candidates for gauge theoretic
equations on manifolds of lower dimension. The talk will give an
overview of gauge theory in the 4 and 8 dimensional cases, and how
gauge theory on Spin(7) manifolds could be used to develop a gauge
theory on 5 dimensional manifolds.

Thu, 24 Feb 2022

15:00 - 16:00
C2

TBC

TBC
Thu, 17 Feb 2022

15:00 - 16:00
C2

Torsion points on varieties and the Pila-Zannier method - TALK POSTPONED UNTIL WEEK 5

Francesco Ballini
(Oxford University)
Abstract

In 2008 Pila and Zannier used a Theorem coming from Logic, proven by Pila and Wilkie, to give a new proof of the Manin-Mumford Conjecture, creating a new, powerful way to prove Theorems in Diophantine Geometry. The Pila-Wilkie Theorem gives an upper bound on the number of rational points on analytic varieties which are not algebraic; this bound usually contradicts a Galois-theoretic bound obtained by arithmetic considerations. We show how this technique can be applied to the following problem of Lang: given an irreducible polynomial f(x,y) in C[x,y], if for infinitely many pairs of roots of unity (a,b) we have f(a,b)=0, then f(x,y) is either of the form x^my^n-c or x^m-cy^n for c a root of unity.

Subscribe to