## Status:

Wallis Professor of Mathematics

+44 1865 616611

## ORCID iD:

https://orcid.org/0000-0002-9972-2809## Research groups:

## Address

University of Oxford

Andrew Wiles Building

Radcliffe Observatory Quarter

Woodstock Road

Oxford

OX2 6GG

## Recent Books:

System control and rough paths

ISBN-10: 0-19-850648-1
(2002)

## Highlighted Publications:

High order recombination and an application to cubature on Wiener space

Annals of Applied Probability
volume 22
page 1301-1327
(2012)

Backward stochastic dynamics on a filtered probability space

Annals of Probability
issue 4
volume 39
page 1422-1448
(1 July 2011)

Expected signature of two dimensional Brownian Motion up to the first exit time of the domain

(2011)

Integrability Estimates for Gaussian Rough Differential Equations

(2011)

Uniqueness for the signature of a path of bounded variation and the reduced path group

Annals of Mathematics. Second Series
volume 171
page 109-167
(2010)

## Recent Publications:

A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder

Translational Psychiatry
issue 1
volume 8
page 274-
(13 December 2018)

A Path Signature Approach to Online Arabic Handwriting Recognition

2nd IEEE International Workshop on Arabic and Derived Script Analysis and Recognition, ASAR 2018
page 135-139
(2 October 2018)

^{☆}[C. R. Acad. Sci. Paris, Ser. I 356 (7) (2018) 720–724] (Comptes rendus - Mathématique (2018) 356(7) (720–724), (S16

Corrigendum to “Super-multiplicativity and a lower bound for the decay of the signature of a path of finite length”^{☆} [C. R. Acad. Sci. Paris, Ser. I 356 (7) (2018) 720–724] (Comptes rendus - Mathématique (2018) 356(7) (720–724), (S16

Comptes Rendus Mathematique
issue 10
volume 356
page 987-
(1 October 2018)

Super-multiplicativity and a lower bound for the decay of the signature of a path of finite length

Comptes Rendus Mathématique
issue 7
volume 356
page 720-724
(22 May 2018)

Rotation-free online handwritten character recognition using dyadic path signature features, hanging normalization, and deep neural network

23rd International Conference on Pattern Recognition (ICPR 2016)
page 4083-4088
(1 April 2017)

## Research interests:

I am the Wallis Professor of Mathematics; I was a founding member (2007) of, and then Director (2011-2015) of, the Oxford Man Institute of Quantitative Finance; I was the Director of the Wales Institute of Mathematical and Computational Sciences (WIMCS; 2008-2011). I came to Oxford in 2000 having previously been Professor of Mathematics at Imperial College London (1993-2000), and before that I held the Colin Maclaurin Chair at Edinburgh (1985-93).

My long-term research interests are all focused on Rough Paths, Stochastic Analysis, and applications - particularly to Finance and more generally to the summarsing of large complex data. That is to say I am interested in developing mathematical tools that can be used to effectively model and describe high dimensional systems that exhibit randomness. This involves me in a wide range of problems from pure mathematical ones to questions of efficient numerical calculation.

## Further details:

Stochastic analysis. This is the area of mathematics relating to the rigorous description of high-dimensional systems that have randomness. It is an area of wide-reaching importance. Virtually all areas of applied mathematics today involve considerations of randomness, and a mobile phone would not work without taking advantage of it. Those who provide fixed-rate mortgages have to take full account of it. My interests are in identifying the fundamental language and the basic results that are required to model the interaction between highly oscillatory systems where the usual calculus is inappropriate. If you google ‘Rough Paths’ and ‘Lyons’ you will find further information. My St Flour Lecture notes provide a straightforward technical introduction with all the details put as simply as possible. A more general introduction can be found in my talk/paper to the European Mathematical Society in Stockholm in 2002.

My approach is that of a pure mathematician, but my research has consequences for numerical methods, finance, sound compression and filtering. At the moment I am (speculatively) exploring their usefulness in understanding sudden shocks on dynamical systems, and also trying to understand the implications for geometric measure theory. The focus of my research directed to ‘Rough paths’ can be viewed as a successful approach to understanding certain types of non-rectifiable currents.

I actively look for applications in the mathematics I do, but my experience has led me to believe strongly in the importance of being rigorous in the development of the core mathematical ideas. For me, the word proof is synonymous with the more palatable ‘precise, convincing and detailed explanation’, and I believe it is important, even essential, to find rigorous proofs of the key mathematical intuitions so that mathematics can reliably grow and ideas can be passed on to the next generation.