Mon, 08 Mar 2021

16:00 - 17:00
Virtual

Chen's theorem

Julia Stadlmann
(Oxford)
Abstract

In 1966 Chen Jingrun showed that every large even integer can be written as the sum of two primes or the sum of a prime and a semiprime. To date, this weakened version of Goldbach's conjecture is one of the most remarkable results of sieve theory. I will talk about the big ideas which paved the way to this proof and the ingenious trick which led to Chen's success. No prior knowledge of sieve theory required – all necessary techniques will be introduced in the talk.

Mon, 08 Feb 2021

16:00 - 17:00
Virtual

Recent progress on Chowla's conjecture

Joni Teravainen
(Oxford)
Abstract

Chowla's conjecture from the 1960s is the assertion that the Möbius function does not correlate with its own shifts. I'll discuss some recent works where with collaborators we have made progress on this conjecture.

Mon, 01 Feb 2021
14:15
Virtual

Leaf decompositions in Euclidean spaces

Krzysztof Ciosmak
(Oxford)
Abstract

In the talk I shall discuss an approach to the localisation technique, for spaces satisfying the curvature-dimension condition, by means of L1-optimal transport. Moreover, I shall present recent work on a generalisation of the technique to multiple constraints setting. Applications of the theory lie in functional and geometric inequalities, e.g. in the Lévy-Gromov isoperimetric inequality.

Mon, 25 Jan 2021
14:15
Virtual

Equivariant Lagrangian Floer homology and Extended Field theory

Guillem Cazassus
(Oxford)
Abstract
Given a compact Lie group G and a Hamiltonian G-manifold endowed with a pair of G-Lagrangians, we provide a construction for their equivariant Floer homology. Such groups have been defined previously by Hendricks, Lipshitz and Sarkar, and also by Daemi and Fukaya. A similar construction appeared independently in the work of Kim, Lau and Zheng. We will discuss an attempt to use such groups to construct topological field theories: these should be seen as 3-morphism spaces in the Hamiltonian 3-category, which should serve as a target for a field theory corresponding to Donaldson polynomials.
Mon, 09 Nov 2020

16:00 - 17:00
Virtual

Restriction Problems in Representation Theory

George Robinson
(Oxford)
Abstract

We discuss the problem in representation theory of decomposing restricted representations. We start classically with the symmetric groups via Young diagrams and Young tableaux, and then move into the world of Lie groups. These problems have connections with both physics and number theory, and if there is time I will discuss the Gan-Gross-Prasad conjectures which predict results on restrictions for algebraic groups over both local and global fields. The pre-requisites will build throughout the talk, but it should be accessible to anyone with some knowedge of both finite groups and Lie groups.

Thu, 22 Oct 2020
11:30
Virtual

On the Zilber-Pink Conjecture for complex abelian varieties and distinguished categories

Gabriel Dill
(Oxford)
Abstract

The Zilber-Pink conjecture predicts how large the intersection of a d-dimensional subvariety of an abelian variety/algebraic torus/Shimura variety/... with the union of special subvarieties of codimension > d can be (where the definition of "special" depends on the setting). In joint work with Fabrizio Barroero, we have reduced this conjecture for complex abelian varieties to the same conjecture for abelian varieties defined over the algebraic numbers. In work in progress, we introduce the notion of a distinguished category, which contains both connected commutative algebraic groups and connected mixed Shimura varieties. In any distinguished category, special subvarieties can be defined and a Zilber-Pink statement can be formulated. We show that any distinguished category satisfies the defect condition, introduced as a useful technical tool by Habegger and Pila. Under an additional assumption, which makes the category "very distinguished", we show furthermore that the Zilber-Pink statement in general follows from the case where the subvariety is defined over the algebraic closure of the field of definition of the distinguished variety. The proof closely follows our proof in the case of abelian varieties and leads also to unconditional results in the moduli space of principally polarized abelian surfaces as well as in fibered powers of the Legendre family of elliptic curves.

Mon, 12 Oct 2020

16:00 - 17:00
Virtual

Classical and elliptic polylogarithms

Nil Matthes
(Oxford)
Abstract

The Dirichlet class number formula gives an expression for the residue at s=1 of the Dedekind zeta function of a number field K in terms of certain quantities associated to K. Among those is the regulator of K, a certain determinant involving logarithms of units in K. In the 1980s, Don Zagier gave a conjectural expression for the values at integers s $\geq$ 2 in terms of "higher regulators", with polylogarithms in place of logarithms. The goal of this talk is to give an algebraic-geometric interpretation of these polylogarithms. Time permitting, we will also discuss a similar picture for Hasse--Weil L-functions of elliptic curves.
 

Mon, 19 Oct 2020

14:15 - 15:15
Virtual

Spin(7) Instantons and HYM Connections for the Stenzel Metric

Hector Papoulias
(Oxford)
Abstract

The Spin(7) and SU(4) structures on a Calabi-Yau 4-fold give rise to certain first order PDEs defining special Yang-Mills connections: the Spin(7) instanton equations and the Hermitian Yang-Mills (HYM) equations respectively. The latter are stronger than the former. In 1998 C. Lewis proved that -over a compact base space- the existence of an HYM connection implies the converse. In this talk we demonstrate that the equivalence of the two gauge-theoretic problems fails to hold in generality. We do this by studying the invariant solutions on a highly symmetric noncompact Calabi-Yau 4-fold: the Stenzel manifold. We give a complete description of the moduli space of irreducible invariant Spin(7) instantons with structure group SO(3) on this space and find that the HYM connections are properly embedded in it. This moduli space reveals an explicit example of a sequence of Spin(7) instantons bubbling off near a Cayley submanifold. The missing limit is an HYM connection, revealing a potential relationship between the two equation systems.

Mon, 16 Nov 2020
14:15
Virtual

Optimal transport, Ricci curvature lower bounds and group actions

Andrea Mondino
(Oxford)
Abstract

In the talk I will survey the fast growing field of metric measure spaces satisfying a lower bound on Ricci Curvature, in a synthetic sense via optimal transport. Particular emphasis will be given to discuss how such (possibly non-smooth) spaces naturally (and usefully) extend the class of smooth Riemannian manifolds with Ricci curvature bounded below.

Mon, 23 Nov 2020
14:15
Virtual

Complex Links and Algebraic Multiplicities

Vidit Nanda
(Oxford)
Abstract

Given a nested pair X and Y of complex projective varieties, there is a single positive integer e which measures the singularity type of X inside Y. This is called the Hilbert-Samuel multiplicity of Y along X, and it appears in the formulations of several standard intersection-theoretic constructions including Segre classes, Euler obstructions, and various other multiplicities. The standard method for computing e requires knowledge of the equations which define X and Y, followed by a (super-exponential) Grobner basis computation. In this talk we will connect the HS multiplicity to complex links, which are fundamental invariants of (complex analytic) Whitney stratified spaces. Thanks to this connection, the enormous computational burden of extracting e from polynomial equations reduces to a simple exercise in clustering point clouds. In fact, one doesn't even need the polynomials which define X and Y: it suffices to work with dense point samples. This is joint work with Martin Helmer.

Subscribe to Oxford