Mon, 26 Apr 2021
12:45
Virtual

Calculation of zeta functions for one parameter families of Calabi-Yau manifolds

Philip Candelas
(Oxford)
Abstract

The periods of a Calabi-Yau manifold are of interest both to number theorists and to physicists. To a number theorist the primary object of interest is the zeta function. I will explain what this is, and why this is of interest also to physicists. For applications it is important to be able to calculate the local zeta function for many primes p. I will set out a method, adapted from a procedure proposed by Alan Lauder that makes the computation of the zeta function practical, in this sense, and comment on the form of the results. This talk is based largely on the recent paper hepth 2104.07816 and presents joint work with Xenia de la Ossa and Duco van Straten.

Mon, 26 Apr 2021
14:15
Virtual

Equivariant Seidel maps and a flat connection on equivariant symplectic cohomology

Todd Liebenschutz-Jones
(Oxford)
Abstract

I'll be presenting my PhD work, in which I define two new algebraic structures on the equivariant symplectic cohomology of a convex symplectic manifold. The first is a collection of shift operators which generalise the shift operators on equivariant quantum cohomology in algebraic geometry. That is, given a Hamiltonian action of the torus T, we assign to a cocharacter of T an endomorphism of (S1 × T)-equivariant Floer cohomology based on the equivariant Floer Seidel map. The second is a connection which is a multivariate version of Seidel’s q-connection on S1 -equivariant Floer cohomology and generalises the Dubrovin connection on equivariant quantum cohomology.

Mon, 10 May 2021
14:15
Virtual

Hilbert schemes for fourfolds and Quot-schemes for surfaces

Arkadij Bojko
(Oxford)
Abstract

Counting coherent sheaves on Calabi--Yau fourfolds is a subject in its infancy. An evidence of this is given by how little is known about perhaps the simplest case - counting ideal sheaves of length $n$. On the other hand, the parallel story for surfaces while with many open questions has seen many new results, especially in the direction of understanding virtual integrals over Quot-schemes. Motivated by the conjectures of Cao--Kool and Nekrasov, we study virtual integrals over Hilbert schemes of points of top Chern classes $c_n(L^{[n]})$ and their K-theoretic refinements. Unlike lower-dimensional sheaf-counting theories, one also needs to pay attention to orientations. In this, we rely on the conjectural wall-crossing framework of Joyce. The same methods can be used for Quot-schemes of surfaces and we obtain a generalization of the work of Arbesfeld--Johnson--Lim--Oprea--Pandharipande for a trivial curve class. As a result, there is a correspondence between invariants for surfaces and fourfolds in terms of a universal transformation.

Wed, 27 Jan 2021

16:00 - 17:00

Multiplicative gerbes and H^4(BG)

Christoph Weis
(Oxford)
Abstract

The cohomology of a manifold classifies geometric structures over it. One instance of this principle is the classification of line bundles via Chern classes. The classifying space BG associated to a (Lie) group G is a simplicial manifold which encodes the group structure. Its cohomology hence classifies geometric objects over G which play well with its multiplication. These are known as characteristic classes, and yield invariants of G-principal bundles.
I will introduce multiplicative gerbes and show how they realise classes in H^4(BG) when G is compact. Along the way, we will meet different versions of Lie group cohomology, smooth 2-groups and a few spectral sequences.

Link: https://teams.microsoft.com/l/meetup-join/19%3ameeting_ZGRiMTM1ZjQtZWNi…

Mon, 08 Mar 2021

16:00 - 17:00
Virtual

Chen's theorem

Julia Stadlmann
(Oxford)
Abstract

In 1966 Chen Jingrun showed that every large even integer can be written as the sum of two primes or the sum of a prime and a semiprime. To date, this weakened version of Goldbach's conjecture is one of the most remarkable results of sieve theory. I will talk about the big ideas which paved the way to this proof and the ingenious trick which led to Chen's success. No prior knowledge of sieve theory required – all necessary techniques will be introduced in the talk.

Mon, 08 Feb 2021

16:00 - 17:00
Virtual

Recent progress on Chowla's conjecture

Joni Teravainen
(Oxford)
Abstract

Chowla's conjecture from the 1960s is the assertion that the Möbius function does not correlate with its own shifts. I'll discuss some recent works where with collaborators we have made progress on this conjecture.

Mon, 01 Feb 2021
14:15
Virtual

Leaf decompositions in Euclidean spaces

Krzysztof Ciosmak
(Oxford)
Abstract

In the talk I shall discuss an approach to the localisation technique, for spaces satisfying the curvature-dimension condition, by means of L1-optimal transport. Moreover, I shall present recent work on a generalisation of the technique to multiple constraints setting. Applications of the theory lie in functional and geometric inequalities, e.g. in the Lévy-Gromov isoperimetric inequality.

Mon, 25 Jan 2021
14:15
Virtual

Equivariant Lagrangian Floer homology and Extended Field theory

Guillem Cazassus
(Oxford)
Abstract
Given a compact Lie group G and a Hamiltonian G-manifold endowed with a pair of G-Lagrangians, we provide a construction for their equivariant Floer homology. Such groups have been defined previously by Hendricks, Lipshitz and Sarkar, and also by Daemi and Fukaya. A similar construction appeared independently in the work of Kim, Lau and Zheng. We will discuss an attempt to use such groups to construct topological field theories: these should be seen as 3-morphism spaces in the Hamiltonian 3-category, which should serve as a target for a field theory corresponding to Donaldson polynomials.
Mon, 09 Nov 2020

16:00 - 17:00
Virtual

Restriction Problems in Representation Theory

George Robinson
(Oxford)
Abstract

We discuss the problem in representation theory of decomposing restricted representations. We start classically with the symmetric groups via Young diagrams and Young tableaux, and then move into the world of Lie groups. These problems have connections with both physics and number theory, and if there is time I will discuss the Gan-Gross-Prasad conjectures which predict results on restrictions for algebraic groups over both local and global fields. The pre-requisites will build throughout the talk, but it should be accessible to anyone with some knowedge of both finite groups and Lie groups.

Thu, 22 Oct 2020
11:30
Virtual

On the Zilber-Pink Conjecture for complex abelian varieties and distinguished categories

Gabriel Dill
(Oxford)
Abstract

The Zilber-Pink conjecture predicts how large the intersection of a d-dimensional subvariety of an abelian variety/algebraic torus/Shimura variety/... with the union of special subvarieties of codimension > d can be (where the definition of "special" depends on the setting). In joint work with Fabrizio Barroero, we have reduced this conjecture for complex abelian varieties to the same conjecture for abelian varieties defined over the algebraic numbers. In work in progress, we introduce the notion of a distinguished category, which contains both connected commutative algebraic groups and connected mixed Shimura varieties. In any distinguished category, special subvarieties can be defined and a Zilber-Pink statement can be formulated. We show that any distinguished category satisfies the defect condition, introduced as a useful technical tool by Habegger and Pila. Under an additional assumption, which makes the category "very distinguished", we show furthermore that the Zilber-Pink statement in general follows from the case where the subvariety is defined over the algebraic closure of the field of definition of the distinguished variety. The proof closely follows our proof in the case of abelian varieties and leads also to unconditional results in the moduli space of principally polarized abelian surfaces as well as in fibered powers of the Legendre family of elliptic curves.

Subscribe to Oxford