Mon, 12 Oct 2020

16:00 - 17:00
Virtual

Classical and elliptic polylogarithms

Nil Matthes
(Oxford)
Abstract

The Dirichlet class number formula gives an expression for the residue at s=1 of the Dedekind zeta function of a number field K in terms of certain quantities associated to K. Among those is the regulator of K, a certain determinant involving logarithms of units in K. In the 1980s, Don Zagier gave a conjectural expression for the values at integers s $\geq$ 2 in terms of "higher regulators", with polylogarithms in place of logarithms. The goal of this talk is to give an algebraic-geometric interpretation of these polylogarithms. Time permitting, we will also discuss a similar picture for Hasse--Weil L-functions of elliptic curves.
 

Mon, 19 Oct 2020

14:15 - 15:15
Virtual

Spin(7) Instantons and HYM Connections for the Stenzel Metric

Hector Papoulias
(Oxford)
Abstract

The Spin(7) and SU(4) structures on a Calabi-Yau 4-fold give rise to certain first order PDEs defining special Yang-Mills connections: the Spin(7) instanton equations and the Hermitian Yang-Mills (HYM) equations respectively. The latter are stronger than the former. In 1998 C. Lewis proved that -over a compact base space- the existence of an HYM connection implies the converse. In this talk we demonstrate that the equivalence of the two gauge-theoretic problems fails to hold in generality. We do this by studying the invariant solutions on a highly symmetric noncompact Calabi-Yau 4-fold: the Stenzel manifold. We give a complete description of the moduli space of irreducible invariant Spin(7) instantons with structure group SO(3) on this space and find that the HYM connections are properly embedded in it. This moduli space reveals an explicit example of a sequence of Spin(7) instantons bubbling off near a Cayley submanifold. The missing limit is an HYM connection, revealing a potential relationship between the two equation systems.

Mon, 16 Nov 2020
14:15
Virtual

Optimal transport, Ricci curvature lower bounds and group actions

Andrea Mondino
(Oxford)
Abstract

In the talk I will survey the fast growing field of metric measure spaces satisfying a lower bound on Ricci Curvature, in a synthetic sense via optimal transport. Particular emphasis will be given to discuss how such (possibly non-smooth) spaces naturally (and usefully) extend the class of smooth Riemannian manifolds with Ricci curvature bounded below.

Mon, 23 Nov 2020
14:15
Virtual

Complex Links and Algebraic Multiplicities

Vidit Nanda
(Oxford)
Abstract

Given a nested pair X and Y of complex projective varieties, there is a single positive integer e which measures the singularity type of X inside Y. This is called the Hilbert-Samuel multiplicity of Y along X, and it appears in the formulations of several standard intersection-theoretic constructions including Segre classes, Euler obstructions, and various other multiplicities. The standard method for computing e requires knowledge of the equations which define X and Y, followed by a (super-exponential) Grobner basis computation. In this talk we will connect the HS multiplicity to complex links, which are fundamental invariants of (complex analytic) Whitney stratified spaces. Thanks to this connection, the enormous computational burden of extracting e from polynomial equations reduces to a simple exercise in clustering point clouds. In fact, one doesn't even need the polynomials which define X and Y: it suffices to work with dense point samples. This is joint work with Martin Helmer.

Tue, 23 Jun 2020
12:00

Cluster patterns in Landau and Leading Singularities via the Amplituhedron

Matteo Parisi
(Oxford)
Abstract

In this talk I will present some recent explorations of cluster-algebraic patterns in the building blocks of scattering amplitudes in N = 4 super Yang-Mills theory. In particular, I will first briefly introduce the main characters on stage, i.e. Leading Singularities, Landau singularities, the amplituhedron and cluster algebras. I will then present my main conjecture, "LL-adjacency", which makes all the above characters play together: given a maximal cut of a loop amplitude, Landau singularities and poles of each Yangian invariant appearing in any representation of the corresponding Leading Singularities can be found together in a cluster.  I will explain how the conjecture has been tested for all one-loop amplitudes up to 9 points using cluster algebraic and amplituhedron-based methods.  Finally, I will discuss implications for computing loop amplitudes and their singularity structure, and open research directions.

This is based on the joint work with Ömer Gürdoğan (arXiv: 2005.07154).

Thu, 11 Jun 2020
11:30
Virtual

Covers of modular curves, categoricity and Drinfeld's GT

Boris Zilber
(Oxford)
Abstract

This is a joint work with C.Daw in progress. We study the L_{omega_1,omega}-theory of the modular functions j_n: H -> Y(n). In other words, H is seen here as the universal cover in the class of modular curves. The setting is different from one considered before by Adam Harris and Chris Daw: GL(2,Q) is given here as the sort without naming its individual elements. As usual in the study of 'pseudo-analytic cover structures', the statement of categoricity is equivalent to certain arithmetic conditions, the most challenging of which is to determine the Galois action on CM-points. This turns out to be equivalent to determining the Galois action on SL(2,\hat{Z})/(-1), that is a subgroup of

Out SL(2,\hat{Z})/(-1)   induced by the action of  Gal_Q. We find by direct matrix calculations a subgroup Out_* of the outer automorphisms group which contains the image of Gal_Q. Moreover, we prove that Out_* is the image of Drinfeld's group GT (Grothendieck-Teichmuller group) under a natural homomorphism.

It is a reasonable to conjecture that Out_* is equal to the image of Gal_Q, which would imply the categoricity statement. It follows from the above that our conjecture is a consequence of Drinfeld's conjecture which states that GT is isomorphic to Gal_Q.  

 

 

Tue, 12 May 2020
12:00

Summing scalar Feynman diagrams

Hadleigh Frost
(Oxford)
Abstract

A motivation in the development of string theory was the 'duality' flip, exchanging the s- and t-channels, which relates all the cubic Feynman graphs at each order in perturbation theory, with fixed planar structure. In string theory, we can understand this as coming from the moduli spaces of marked surfaces, with the cubic diagrams corresponding to complete triangulations. I will describe how geometric-type cluster algebras give a surprising 'linear' way to talk about the same combinatorial problem, using results from work with N Arkani-Hamed and H Thomas and G Salvatori. This gives new ways to compute cubic scalar amplitudes, and new families of integrals generalizing the Veneziano amplitude.

 

Fri, 08 May 2020

15:00 - 16:00
Virtual

Graph Filtrations with Spectral Wavelet Signatures

Ambrose Yim
(Oxford)
Abstract

We present a recipe for constructing filter functions on graphs with parameters that can optimised by gradient descent. This recipe, based on graph Laplacians and spectral wavelet signatures, do not require additional data to be defined on vertices. This allows any graph to be assigned a customised filter function for persistent homology computations and data science applications, such as graph classification. We show experimental evidence that this recipe has desirable properties for optimisation and machine learning pipelines that factors through persistent homology. 

Fri, 15 May 2020

15:00 - 16:00
Virtual

From dynamics to combinatorics and back again

Kelly Spendlove
(Oxford)
Abstract

The last fifty years of dynamical systems theory have established that dynamical systems can exhibit extremely complex behavior with respect to both the system variables (chaos theory) and parameters (bifurcation theory). Such complex behavior found in theoretical work must be reconciled with the capabilities of the current technologies available for applications. For example, in the case of modelling biological phenomena, measurements may be of limited precision, parameters are rarely known exactly and nonlinearities often cannot be derived from first principles. 

The contrast between the richness of dynamical systems and the imprecise nature of available modeling tools suggests that we should not take models too seriously. Stating this a bit more formally, it suggests that extracting features which are robust over a range of parameter values is more important than an understanding of the fine structure at some particular parameter.

The goal of this talk is to present a high-level introduction/overview of computational Conley-Morse theory, a rigorous computational approach for understanding the global dynamics of complex systems.  This introduction will wander through dynamical systems theory, algebraic topology, combinatorics and end in game theory.

Subscribe to Oxford