Mon, 11 May 2020
14:15
Virtual

Universal structures in enumerative invariant theories

Dominic Joyce
(Oxford)
Abstract

An enumerative invariant theory in Algebraic Geometry, Differential Geometry, or Representation Theory, is the study of invariants which 'count' $\tau$-(semi)stable objects $E$ with fixed topological invariants $[E]=\alpha$ in some geometric problem, by means of a virtual class $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ of the moduli spaces ${\mathcal M}_\alpha^{\rm st}(\tau)\subseteq{\mathcal M}_\alpha^{\rm ss}(\tau)$ of $\tau$-(semi)stable objects in some homology theory. Examples include Mochizuki's invariants counting coherent sheaves on surfaces, Donaldson-Thomas type invariants counting coherent sheaves on Calabi-Yau 3- and 4-folds and Fano 3-folds, and Donaldson invariants of 4-manifolds.

We make conjectures on new universal structures common to many enumerative invariant theories. Any such theory has two moduli spaces ${\mathcal M},{\mathcal M}^{\rm pl}$, where my big vertex algebras project http://people.maths.ox.ac.uk/~joyce/hall.pdf gives $H_*({\mathcal M})$ the structure of a graded vertex algebra, and $H_*({\mathcal M}^{\rm pl})$ a graded Lie algebra, closely related to $H_*({\mathcal M})$. The virtual classes $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ take values in $H_*({\mathcal M}^{\rm pl})$. In most such theories, defining $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ when ${\mathcal M}_\alpha^{\rm st}(\tau)\ne{\mathcal M}_\alpha^{\rm ss}(\tau)$ (in gauge theory, when the moduli space contains reducibles) is a difficult problem. We conjecture that there is a natural way to define $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ in homology over $\mathbb Q$, and that the resulting classes satisfy a universal wall-crossing formula under change of stability condition $\tau$, written using the Lie bracket on $H_*({\mathcal M}^{\rm pl})$. We prove our conjectures for moduli spaces of representations of quivers without oriented cycles.

This is joint work with Jacob Gross and Yuuji Tanaka.

 

Mon, 04 May 2020
14:15
Virtual

Homology of moduli stacks of complexes

Jacob Gross
(Oxford)
Abstract

There are many known ways to compute the homology of the moduli space of algebraic vector bundles on a curve. For higher-dimensional varieties however, this problem is very difficult. It turns out that the moduli stack of objects in the derived category of a variety X, however, is topologically simpler than the moduli stack of vector bundles on X. We compute the rational homology of the moduli stack of complexes in the derived category of a smooth complex projective variety. For a certain class of varieties X including curves, surfaces, flag varieties, and certain 3- and 4-folds we get that the rational cohomology is freely generated by Künneth components of Chern characters of the universal complex––this allows us to identify Joyce's vertex algebra construction with a super-lattice vertex algebra on the rational cohomology of X in these cases. 

Mon, 27 Apr 2020
14:15
Virtual

Evanescent ergosurfaces and waves

Joe Keir
(Oxford)
Abstract

Certain exotic Lorentzian manifolds, including some of importance to string theory, possess an unusual geometric feature called an "evanescent ergosurface". In this talk I will introduce this feature and motivate the study of the wave equation on the associated geometries. It turns out that the presence of an evanescent ergosurface prevents the energy of waves from being uniformly bounded in terms of their initial energy; I will outline the proof of this statement. An immediate corollary is that there do not exist manifolds with both an evanescent ergosurface and a globally timelike Killing vector field.

Mon, 09 Mar 2020
12:45
L3

Bottom-up construction of 4d N=2 SCFTs

Carlo Meneghelli
(Oxford)
Abstract

In this talk, I will argue how the observation that four-dimensional N=2 superconformal field theories are interconnected via the operation of Higgsing can be turned into an effective method to construct such SCFTs. A fundamental role is played by the (generalized) free field realization of the associated VOAs.

Mon, 10 Feb 2020

16:00 - 17:00
C1

Periods and the motivic Galois group

Deepak Kamlesh
(Oxford)
Abstract

A long time ago, Grothendieck made some conjectures. This has resulted in some things.

Mon, 17 Feb 2020

16:00 - 17:00
L4

Rough solutions of the $3$-D compressible Euler equations

Qian Wang
(Oxford)
Abstract

I will talk about my work arxiv:1911.05038. We prove the local-in-time well-posedness for the solution of the compressible Euler equations in $3$-D, for the Cauchy data of the velocity, density and vorticity $(v,\varrho, \omega) \in H^s\times H^s\times H^{s'}$, $2<s'<s$. The result extends the sharp result of Smith-Tataru and Wang, established in the irrotational case, i.e $ \omega=0$, which is known to be optimal for $s>2$. At the opposite extreme, in the incompressible case, i.e. with a constant density, the result is known to hold for $ \omega\in H^s$, $s>3/2$ and fails for $s\le 3/2$, see the work of Bourgain-Li. It is thus natural to conjecture that the optimal result should be $(v,\varrho, \omega) \in H^s\times H^s\times H^{s'}$, $s>2, \, s'>\frac{3}{2}$. We view our work here as an important step in proving the conjecture. The main difficulty in establishing sharp well-posedness results for general compressible Euler flow is due to the highly nontrivial interaction between the sound waves, governed by quasilinear wave equations, and vorticity which is transported by the flow. To overcome this difficulty, we separate the dispersive part of sound wave from the transported part, and gain regularity significantly by exploiting the nonlinear structure of the system and the geometric structures of the acoustic spacetime.
 

Mon, 17 Feb 2020
12:45
L3

Rademacher Expansions and the Spectrum of 2d CFT

Jinbeom Bae
(Oxford)
Abstract


I will describe work exploring the spectrum of two-dimensional unitary conformal field theories(CFT) with no extended chiral algebra and central charge larger than one. I will revisit a classical result from analytic number theory by Rademacher, which provides an exact formula for the Fourier coefficients of modular forms of non-positive weight. Generalizing this, I will explain how we employed Rademacher's idea to study the spectral density of two-dimensional CFT of our interest. The expression is given in terms of a Rademacher expansion, which converges for nonzero spin. The implications of our spectral density to the pure gravity in AdS3 will be discussed.

Tue, 10 Mar 2020
12:00
L4

The central sphere of a gravitational instanton

Prof Nigel Hitchin
(Oxford)
Abstract

The asymptotically locally Euclidean Ricci-flat self-dual 4-manifolds were classified and constructed by Kronheimer as hyperkahler quotients. Each belongs to a finite-dimensional family and a particularly interesting subfamily consists of manifolds with a circle action which can be identified with the minimal resolution of a quotient singularity C^2/G where G is a finite subgroup of SU(2). The resolved singularity is a configuration of rational curves and there is a distinguished one which is pointwise fixed by the circle action. The talk will give an explicit description of the induced metric on this central sphere, and involves twistor theory and the geometry of the lines on a cubic surface.
 

Tue, 04 Feb 2020
14:00
L6

An asymptotic version of the prime power conjecture

Sarah Peluse
(Oxford)
Abstract

A subset $D$ of a finite cyclic group $\mathbb{Z}/m\mathbb{Z}$ is called a "perfect difference set" if every nonzero element of $\mathbb{Z}/m\mathbb{Z}$ can be written uniquely as the difference of two elements of $D$. If such a set exists, then a simple counting argument shows that $m=n^2+n+1$ for some nonnegative integer $n$. Singer constructed examples of perfect difference sets in $\mathbb{Z}/(n^2+n+1)\mathbb{Z}$ whenever $n$ is a prime power, and it is an old conjecture that these are the only such $n$ for which $\mathbb{Z}/(n^2+n+1)\mathbb{Z}$ contains a perfect difference set. In this talk, I will discuss a proof of an asymptotic version of this conjecture.

Tue, 25 Feb 2020

16:00 - 17:00
C1

Functional calculus for analytic Besov functions

Charles Batty
(Oxford)
Abstract

There is a class $\mathcal{B}$ of analytic Besov functions on a half-plane, with a very simple description.   This talk will describe a bounded functional calculus $f \in \mathcal{B} \mapsto f(A)$ where $-A$ is the generator of either a bounded $C_0$-semigroup on Hilbert space or a bounded analytic semigroup on a Banach space.    This calculus captures many known results for such operators in a unified way, and sometimes improves them.   A discrete version of the functional calculus was shown by Peller in 1983.

Subscribe to Oxford