Tue, 24 Nov 2020

14:15 - 15:15
Virtual

Minkowski's theorem, and a question of Serre

Michael Collins
(Oxford University)
Abstract

Let $p$ be a prime. Minkowski (1887) gave a bound for the order of a finite $p$-subgroup of the linear group $\mathsf{GL}(n,\mathbf Z)$ as a function of $n$, and this necessarily holds for $p$-subgroups of $\mathsf{GL}(n,\mathbf Q)$ also. A few years ago, Serre asked me whether some analogous result might be obtained for subgroups of $\mathsf{GL}(n,\mathbf C)$ using the methods I employed to obtain optimal bounds for Jordan's theorem.

Bounds can be so obtained and I will explain how but, while Minkowski's bound is achieved, no linear bound (as Serre initially suggested) can be achieved. I will discuss progress on this problem and the issues that arise in seeking an ideal form for the solution.

Thu, 22 Oct 2020
11:30
Virtual

On the Zilber-Pink Conjecture for complex abelian varieties and distinguished categories

Gabriel Dill
(Oxford)
Abstract

The Zilber-Pink conjecture predicts how large the intersection of a d-dimensional subvariety of an abelian variety/algebraic torus/Shimura variety/... with the union of special subvarieties of codimension > d can be (where the definition of "special" depends on the setting). In joint work with Fabrizio Barroero, we have reduced this conjecture for complex abelian varieties to the same conjecture for abelian varieties defined over the algebraic numbers. In work in progress, we introduce the notion of a distinguished category, which contains both connected commutative algebraic groups and connected mixed Shimura varieties. In any distinguished category, special subvarieties can be defined and a Zilber-Pink statement can be formulated. We show that any distinguished category satisfies the defect condition, introduced as a useful technical tool by Habegger and Pila. Under an additional assumption, which makes the category "very distinguished", we show furthermore that the Zilber-Pink statement in general follows from the case where the subvariety is defined over the algebraic closure of the field of definition of the distinguished variety. The proof closely follows our proof in the case of abelian varieties and leads also to unconditional results in the moduli space of principally polarized abelian surfaces as well as in fibered powers of the Legendre family of elliptic curves.

Fri, 23 Oct 2020
15:00
Virtual

Topological Gravity as the Early Phase of Our Universe

Georges Obied
(Harvard University)
Abstract

Motivated by string dualities we propose topological gravity as the early phase of our universe.  The topological nature of this phase naturally leads to the explanation of many of the puzzles of early universe cosmology.  A concrete realization of this scenario using Witten's four dimensional topological gravity is considered.  This model leads to the power spectrum of CMB fluctuations which is controlled by the conformal anomaly coefficients $a,c$.  In particular the strength of the fluctuation is controlled by $1/a$ and its tilt by $c g^2$ where $g$ is the coupling constant of topological gravity.  The positivity of $c$, a consequence of unitarity, leads automatically to an IR tilt for the power spectrum.   In contrast with standard inflationary models, this scenario predicts $\mathcal{O}(1)$ non-Gaussianities for four- and higher-point correlators and the absence of tensor modes in the CMB fluctuations.

Tue, 09 Mar 2021
14:15
Virtual

Coadmissible modules, bornologies, and derived categories II

Andreas Bode
(ENS Lyon)
Abstract

Coadmissible modules over Frechet-Stein algebras arise naturally in p-adic representation theory, e.g. in the study of locally analytic representations of p-adic Lie groups or the function spaces of rigid analytic Stein spaces. We show that in many cases, the category of coadmissible modules admits an exact and fully faithful embedding into the category of complete bornological modules, also preserving tensor products. This allows us to introduce derived methods to the study of coadmissible modules without forsaking the analytic flavour of the theory. As an application, we introduce six functors for Ardakov-Wadsley's D-cap-modules and discuss some instances where coadmissibility (in a derived sense) is preserved.

Fri, 23 Oct 2020

15:00 - 16:00
Virtual

Sampling and homology via bottlenecks

Oliver Gäfvert
(KTH Stockholm)
Abstract

In this talk I will present an efficient algorithm to produce a provably dense sample of a smooth compact algebraic variety. The procedure is partly based on computing bottlenecks of the variety. Using geometric information such as the bottlenecks and the local reach we also provide bounds on the density of the sample needed in order to guarantee that the homology of the variety can be recovered from the sample.

Tue, 01 Dec 2020

14:15 - 15:15
Virtual

The deformed Dixmier-Moeglin equivalence for completed enveloping algebras

Adam Jones
(Manchester University)
Abstract

An algebra $R$ is said to satisfy the Dixmier-Moeglin equivalence if a prime ideal $P$ of $R$ is primitive if and only if it is rational, if and only if it is locally closed, and a commonly studied problem in non-commutative algebra is to classify rings satisfying this equivalence, e.g. $U(\mathfrak g)$ for a finite dimensional Lie algebra $\mathfrak g$. We explore methods of generalising this to a $p$-adic setting, where we need to weaken the statement. Specifically, if $\hat R$ is the $p$-adic completion of a $\mathbb Q_p$-algebra $R$, rather than approaching the Dixmier-Moeglin equivalence for $\hat R$ directly, we instead compare the classes of primitive, rational and locally closed prime ideals of $\hat R$ within suitable "deformations". The case we focus on is where $R=U(L)$ for a $\mathbb Z_p$-Lie algebra $L$, and the deformations have the form $\hat U(p^n L)$, and we aim to prove a version of the equivalence in the instance where $L$ is nilpotent.

Fri, 23 Oct 2020
16:00
Virtual

North meets South colloquium

Martin Gallauer and Zhaohe Dai
Abstract

Martin Gallauer (North): "Algebraic algebraic geometry"
If a space is described by algebraic equations, its algebraic invariants are endowed with additional structure. I will illustrate this with some simple examples, and speculate on the meaning of the title of my talk.

Zhaohe Dai (South): "Two-dimensional material bubbles"
Two-dimensional (2D) materials are a relatively new class of thin sheets consisting of a single layer of covalently bonded atoms and have shown a host of unique electronic properties. In 2D material electronic devices, however, bubbles often form spontaneously due to the trapping of air or ambient contaminants (such as water molecules and hydrocarbons) at sheet-substrate interfaces. Though they have been considered to be a nuisance, I will discuss that bubbles can be used to characterize 2D materials' bending rigidity after the pressure inside being well controlled. I will then focus on bubbles of relatively large deformations so that the elastic tension could drive the radial slippage of the sheet on its substrate. Finally, I will discuss that the consideration of such slippage is vital to characterize the sheet's stretching stiffness and gives new opportunities to understand the adhesive and frictional interactions between the sheet and various substrates that it contacts.
 

Tue, 17 Nov 2020
12:00
Virtual

Causal Relations At Infinity

Peter Cameron
(DAMTP Cambridge)
Abstract

Motivated by an attempt to construct a theory of quantum gravity as a perturbation around some flat background, Penrose has shown that, despite being asymptotically flat, there is an inconsistency between the causal structure at infinity of Schwarzschild and Minkowski spacetimes. This suggests that such a perturbative approach cannot possibly work. However, the proof of this inconsistency is specific to 4 spacetime dimensions. In this talk I will discuss how this result extends to higher (and lower) dimensions. More generally, I will consider examples of how the causal structure of asymptotically flat spacetimes are affected by dimension and by the presence of mass (both positive and negative). I will then show how these ideas can be used to prove a higher dimensional extension of the positive mass theorem of Penrose, Sorkin and Woolgar.

Thu, 03 Dec 2020

16:00 - 17:30
Virtual

Kirigami

Lakshminarayanan Mahadevan
(Harvard)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

Abstract

Kirigami, the relatively unheralded cousin of origami, is the art of cutting paper to articulate and deploy it as a whole. By varying the number, size, orientation and coordination of the cuts, artists have used their imagination and intuition to create remarkable sculptures in 2 and 3 dimensions. I will describe some of our attempts to quantify the inverse problem that artists routinely solve, combining elementary mathematical ideas, with computations and physical models. 

[[{"fid":"60095","view_mode":"media_portrait_large","fields":{"format":"media_portrait_large","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_portrait_large","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-portrait-large","data-delta":"1"}}]]

 

Thu, 05 Nov 2020

16:00 - 17:30
Virtual

Stupid, but smart: chemotactic and autochemotactic effects in self-propelling droplets

Corinna Maass
(MPI Dynamics & Self-Organization)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

Abstract

Artificial microswimmers are an emerging field of research, attracting
interest as testing beds for physical theories of complex biological
entities, as inspiration for the design of smart materials, and for the
sheer elegance, and often quite counterintuitive phenomena of
experimental nonlinear dynamics.

Self-propelling droplets are among the most simplified swimmer models
imaginable, requiring just three components (oil, water, surfactant). In
this talk, I will show how these inherently stupid objects can make
surprisingly smart decisions based on interactions with microfluidic
structures and self-generated and external chemical fields.

Subscribe to Virtual