Tue, 17 Nov 2020

14:15 - 15:15
Virtual

The Poisson spectrum of the symmetric algebra of the Virasoro algebra

Susan Sierra
(Edinburgh University)
Abstract

Let W be the Witt algebra of vector fields on the punctured complex plane, and let Vir be the Virasoro algebra, the unique nontrivial central extension of W.  We discuss work in progress with Alexey Petukhov to analyse Poisson ideals of the symmetric algebra of Vir.

We focus on understanding maximal Poisson ideals, which can be given as the Poisson cores of maximal ideals of Sym(Vir) and of Sym(W).  We give a complete classification of maximal ideals of Sym(W) which have nontrivial Poisson cores.  We then lift this classification to Sym(Vir), and use it to show that if $\lambda \neq 0$, then $(z-\lambda)$ is a maximal Poisson ideal of Sym(Vir).

Mon, 26 Oct 2020

16:00 - 17:00
Virtual

From curves to arithmetic geometry: Parshin's trick

Jay Swar
Abstract

In 1983, Faltings proved Mordell's conjecture on the finiteness of $K$-points on curves of genus >1 defined over a number field $K$ by proving the finiteness of isomorphism classes of isogenous abelian varieties over $K$. The "first" major step from Mordell's conjecture to what Faltings did came 15 years earlier when Parshin showed that a certain conjecture of Shafarevich would imply Mordell's conjecture. In this talk, I'll focus on motivating and sketching Parshin's argument in an accessible manner and provide some heuristics on how to get from Faltings' finiteness statement to the Shafarevich conjecture.

Mon, 12 Oct 2020

16:00 - 17:00
Virtual

Classical and elliptic polylogarithms

Nil Matthes
(Oxford)
Abstract

The Dirichlet class number formula gives an expression for the residue at s=1 of the Dedekind zeta function of a number field K in terms of certain quantities associated to K. Among those is the regulator of K, a certain determinant involving logarithms of units in K. In the 1980s, Don Zagier gave a conjectural expression for the values at integers s $\geq$ 2 in terms of "higher regulators", with polylogarithms in place of logarithms. The goal of this talk is to give an algebraic-geometric interpretation of these polylogarithms. Time permitting, we will also discuss a similar picture for Hasse--Weil L-functions of elliptic curves.
 

Tue, 20 Oct 2020

14:15 - 15:15
Virtual

Subspace arrangements and the representation theory of rational Cherednik algebras

Stephen Griffeth
(Universidad de Talca)
Abstract

I will explain how the representation theory of rational Cherednik algebras interacts with the commutative algebra of certain subspace arrangements arising from the reflection arrangement of a complex reflection group. Potentially, the representation theory allows one to study both qualitative questions (e.g., is the arrangement Cohen-Macaulay or not?) and quantitative questions (e.g., what is the Hilbert series of the ideal of the arrangement, or even, what are its graded Betti numbers?), by applying the tools (such as orthogonal polynomials, Kazhdan-Lusztig characters, and Dirac cohomology) that representation theory provides. This talk is partly based on joint work with Susanna Fishel and Elizabeth Manosalva.

Tue, 10 Nov 2020

14:15 - 15:15
Virtual

What is a unipotent representation?

Lucas Mason-Brown
(Oxford University)
Abstract

Let $G$ be a connected reductive algebraic group, and let $G(\mathbb{F}_q)$ be its group of $\mathbb{F}_q$-rational points. Denote by $\mathrm{Irr}(G(\mathbb{F}_q))$ the set of (equivalence classes) of irreducible finite-dimensional representations. Deligne and Lusztig defined a finite subset $$\mathrm{Unip}(G(\mathbb{F}_q)) \subset \mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$$ 
of unipotent representations. These representations play a distinguished role in the representation theory of $G(\mathbb{F}_q)$. In particular, the classification of $\mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$ reduces to the classification of $\mathrm{Unip}(G(\mathbb{F}_q))$. 

Now replace $\mathbb{F}_q$ with a local field $k$ and replace $\mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$ with $\mathrm{Irr}_{\mathrm{u}}(G(k))$ (irreducible unitary representations). Vogan has predicted the existence of a finite subset 
$$\mathrm{Unip}(G(k)) \subset \mathrm{Irr}_{\mathrm{u}}(G(k))$$ 
which completes the following analogy
$$\mathrm{Unip}(G(k)) \text{ is to } \mathrm{Irr}_{\mathrm{u}}(G(k)) \text{ as } \mathrm{Unip}(G(\mathbb{F}_q)) \text{ is to } \mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q)).$$
In this talk I will propose a definition of $\mathrm{Unip}(G(k))$ when $k = \mathbb{C}$. The definition is geometric and case-free. The representations considered include all of Arthur's, but also many others. After sketching the definition and cataloging its properties, I will explain a classification of $\mathrm{Unip}(G(\mathbb{C}))$, generalizing the well-known result of Barbasch-Vogan for Arthur's representations. Time permitting, I will discuss some speculations about the case of $k=\mathbb{R}$.

This talk is based on forthcoming joint work with Ivan Loseu and Dmitryo Matvieievskyi.

Tue, 13 Oct 2020

14:15 - 15:15
Virtual

The Dirac inequality, Weyl groups, and isolated unitary representations

Dan Ciubotaru
(Oxford University)
Abstract

In the classical setting of real semisimple Lie groups, the Dirac inequality (due to Parthasarathy) gives a necessary condition that the infinitesimal character of an irreducible unitary representation needs to satisfy in terms of the restriction of the representation to the maximal compact subgroup. A similar tool was introduced in the setting of representations of p-adic groups in joint work with Barbasch and Trapa, where the necessary unitarity condition is phrased in terms of the semisimple parameter in the Kazhdan-Lusztig parameterization and the hyperspecial parahoric restriction. I will present several consequences of this inequality to the problem of understanding the unitary dual of the p-adic group, in particular, how it can be used in order to exhibit several isolated "extremal" unitary representations and to compute precise "spectral gaps" for them.

Thu, 22 Oct 2020

14:00 - 15:00
Virtual

Classifier-based Distribution-Dissimilarities: From Maximum Mean Discrepancies to Adversarial Examples

Carl-Johann Simon-Gabriel
(ETH Zurich)
Further Information

datasig.ox.ac.uk/events

Abstract

Any binary classifier (or score-function) can be used to define a dissimilarity between two distributions of points with positive and negative labels. Actually, many well-known distribution-dissimilarities are classifier-based dissimilarities: the total variation, the KL- or JS-divergence, the Hellinger distance, etc. And many recent popular generative modelling algorithms compute or approximate these distribution-dissimilarities by explicitly training a classifier: eg GANs and their variants. After a brief introduction to these classifier-based dissimilarities, I will focus on the influence of the classifier's capacity. I will start with some theoretical considerations illustrated on maximum mean discrepancies --a weak form of total variation that has grown popular in machine learning-- and then focus on deep feed-forward networks and their vulnerability to adversarial examples. We will see that this vulnerability is already rooted in the design and capacity of our current networks, and will discuss ideas to tackle this vulnerability in future.

Tue, 27 Oct 2020

14:00 - 15:00
Virtual

Atomic subgraphs and the statistical mechanics of networks

Anatol Wegner
(University College London)
Abstract

We develop random graph models where graphs are generated by connecting not only pairs of vertices by edges but also larger subsets of vertices by copies of small atomic subgraphs of arbitrary topology. This allows the for the generation of graphs with extensive numbers of triangles and other network motifs commonly observed in many real world networks. More specifically we focus on maximum entropy ensembles under constraints placed on the counts and distributions of atomic subgraphs and derive general expressions for the entropy of such models. We also present a procedure for combining distributions of multiple atomic subgraphs that enables the construction of models with fewer parameters. Expanding the model to include atoms with edge and vertex labels we obtain a general class of models that can be parametrized in terms of basic building blocks and their distributions that includes many widely used models as special cases. These models include random graphs with arbitrary distributions of subgraphs, random hypergraphs, bipartite models, stochastic block models, models of multilayer networks and their degree corrected and directed versions. We show that the entropy for all these models can be derived from a single expression that is characterized by the symmetry groups of atomic subgraphs.

Fri, 12 Feb 2021

14:00 - 15:00
Virtual

Fluid-induced fracturing of ice sheets and ice shelves

Yao Lai
(Princeton University)
Abstract

The interplay between fluid flows and fractures is ubiquitous in Nature and technology, from hydraulic fracturing in the shale formation to supraglacial lake drainage in Greenland and hydrofracture on Antarctic ice shelves.

In this talk I will discuss the above three examples, focusing on the scaling laws and their agreement with lab experiments and field observations. As climate warms, the meltwater on Antarctic ice shelves could threaten their structural integrity through propagation of water-driven fractures. We used a combination of machine learning and fracture mechanics to understand the stability of fractures on ice shelves. Our result also indicates that as meltwater inundates the surface of ice shelves in a warm climate, their collapse driven by hydrofracture could significantly influence the flow of the Antarctic Ice Sheets. 

Fri, 29 Jan 2021

14:00 - 15:00
Virtual

Energetics of volcanic eruptions in the deep oceans: linking ash dispersal and megaplume generation

Sam Pegler
(University of Leeds)
Abstract

Deep-marine volcanism drives Earth's most energetic transfers of heat and mass between the crust and the oceans. Yet little is known of the primary source and intensity of the energy release that occurs during seafloor volcanic events owing to the lack of direct observations. Seafloor magmatic activity has nonetheless been correlated in time with the appearance of massive plumes of hydrothermal fluid known as megaplumes. However, the mechanism by which megaplumes form remains a mystery. By utilising observations of pyroclastic deposits on the seafloor, we show that their dispersal required an energy discharge that is sufficiently powerful (1-2 TW) to form a hydrothermal discharge with characteristics that align precisely with those of megaplumes observed to date. The result produces a conclusive link between tephra production, magma extrusion, tephra dispersal and megaplume production. However, the energy flux is too high to be explained by a purely volcanic source (lava heating), and we use our constraints to suggest other more plausible mechanisms for megaplume creation. The talk will cover a combination of new fluid mechanical fundamentals in volcanic transport processes, inversion methods and their implications for volcanism in the deep oceans.

Subscribe to Virtual