Mon, 02 Mar 2026

11:00 - 13:00
L3

The geometric control of boundary-catalytic branching processes

Denis Grebenkov
(Ecole Polytechnique)
Abstract

In the first part of the talk, I will present an overview of recent advances in the description of diffusion-reaction processes and their first-passage statistics, with the special emphasis on the role of the boundary local time and related spectral tools. The second part of the talk will illustrate the use of these tools for the analysis of boundary-catalytic branching processes. These processes describe a broad class of natural phenomena where the population of diffusing particles grows due to their spontaneous binary branching (e.g., division, fission, or splitting) on a catalytic boundary located in a complex environment. We investigate the possibility of the geometric control of the population growth by compensating the proliferation of particles due to catalytic branching events by their absorptions in the bulk or on boundary absorbing regions. We identify an appropriate Steklov spectral problem to obtain the phase diagram of this out-of-equilibrium stochastic process. The principal eigenvalue determines the critical line that separates an exponential growth of the population from its extinction. In other words, we establish a powerful tool for calculating the optimal absorption rate that equilibrates the opposite effects of branching and absorption events and thus results in steady-state behavior of this diffusion-reaction system. Moreover, we show the existence of a critical catalytic rate above which no compensation is possible, so that the population cannot be controlled and keeps growing exponentially. The proposed framework opens promising perspectives for better understanding, modeling, and control of various boundary-catalytic branching processes, with applications in physics, chemistry, and life sciences.

Mon, 16 Feb 2026

15:30 - 16:30
L3

Stochastic dynamics and the Polchinski equation

Dr. Benoit Dagallier
(Department of Mathematics, Imperial College London)
Abstract

I will introduce the Polchinski dynamics, a general framework to study asymptotic properties of statistical mechanics and field theory models inspired by renormalisation group ideas. The Polchinski dynamics has appeared recently under different names, such as stochastic localisation, and in very different contexts (Markov chain mixing, optimal transport, functional inequalities...) Here I will motivate its construction from a physics point of view and mention a few applications. In particular, I will explain how the Polchinski dynamics can be used to generalise Bakry and Emery’s Γ2 calculus to obtain functional inequalities (e.g. Poincaré, log-Sobolev) in physics models which are typically high-dimensional and non-convex. 

Thu, 19 Feb 2026
17:00
L3

Model Theory of Groups Actions on Fields: Revisited

Özlem Beyarslan
(T.C. Boğaziçi Üniversitesi)
Abstract
We revisit the model theory of fields with a group action by automorphisms, focusing on the existence of the model companion G-TCF. We explain a flaw in earlier work and present the corrected result: for finitely generated virtually-free groups G, G-TCF exists if and only if G is finite or free. This is joint work with Piotr Kowalski.
Thu, 26 Feb 2026
17:00
L3

TBA

Amador Martin-Pizarro
(Universitat Freiburg)
Thu, 12 Feb 2026
17:00
L3

Sum-product phenomena for algebraic groups and uniformity

Harry Schmidt
(Warwick University)
Abstract
The classical sum-product phenomena refers to the fact that for any finite set of natural numbers, either its sum set or its product set is large. Erdös--Szemerédi conjectured a sharp lower bound for the maximum of the two. This conjecture is still open but various weaker versions have been shown. Bays--Breuillard generalized this phenomenon to algebraic groups. Further generalizations have been proved by Chernikov--Peterzil--Starchenko. Both of those groups used a mixture of model theory and incidence geometry. In joint work with Harrison and Mudgal we prove a Bourgain--Chang type result for complex algebraic groups of dimension 1. We use substantially different methods than the previous groups. Time permitting, I will also talk about applications of our methods to a question of Bremner.
Thu, 05 Feb 2026
17:00
L3

Ehrenfeucht–Fraïssé-type games in metric model theory

Joni Puljujarvi
(UCL)
Abstract
We survey some results in the model theory of metric structures related to different generalisations of the classic Ehrenfeucht–Fraïssé game. Namely, we look at a game of length $\omega$ that is used to characterise separable structures up to different notions of approximate isomorphism (such as linear isomorphisms between Banach spaces) in a framework that resembles that of positive bounded formulas. Additionally, we look at the (finite-length) EF game for continuous first-order logic and its variant of Ehrenfeucht's theorem. Last, we mention recent work on game comonads for continuous logic.
Thu, 29 Jan 2026
17:00
L3

Sum-product phenomena in arbitrary rings and related problems via model theory

Simon Machado
(ETH Zurick)
Abstract

Approximate subrings are subsets $A$ of a ring $R$ satisfying \[ A + A + AA \subset F + A \] for some finite $F \subset R$. They encode the failure of sum-product phenomena, much like approximate subgroups encode failure of growth in groups.

I will discuss how approximate subrings mirror approximate subgroups and how model-theoretic tools, such as a stabilizer lemma for approximate subrings due to Krupiński, lead to structural results implying a general, non-effective sum-product phenomenon in arbitrary rings: either sets grow rapidly under sum and product, or nilpotent ideals govern their structure. I will also outline related results for infinite approximate subrings and conjectures unifying known (effective) sum-product phenomena.

Based on joint work with Krzysztof Krupiński.

Thu, 22 Jan 2026
17:00
L3

Semi-Pfaffian geometry - tools, and applications

Abhiram Natarajan
(Warwick University)
Abstract

We generalize the seminal polynomial partitioning theorems of Guth and Katz [1, 2] to a set of semi-Pfaffian sets. Specifically, given a set $\Gamma \subseteq \mathbb{R}^n$ of $k$-dimensional semi-Pfaffian sets, where each $\gamma \in \Gamma$ is defined by a fixed number of Pfaffian functions, and each Pfaffian function is in turn defined with respect to a Pfaffian chain $\vec{q}$ of length $r$, for any $D \ge 1$, we prove the existence of a polynomial $P \in \mathbb{R}[X_1, \ldots, X_n]$ of degree at most $D$ such that each connected component of $\mathbb{R}^n \setminus Z(P)$ intersects at most $\sim \frac{|\Gamma|}{D^{n - k - r}}$ elements of $\Gamma$. Also, under some mild conditions on $\vec{q}$, for any $D \ge 1$, we prove the existence of a Pfaffian function $P'$ of degree at most $D$ defined with respect to $\vec{q}$, such that each connected component of $\mathbb{R}^n \setminus Z(P')$ intersects at most $\sim \frac{|\Gamma|}{D^{n-k}}$ elements of $\Gamma$. To do so, given a $k$-dimensional semi-Pfaffian set $\gamma \subseteq \mathbb{R}^n$, and a polynomial $P \in \mathbb{R}[X_1, \ldots, X_n]$ of degree at most $D$, we establish a uniform bound on the number of connected components of $\mathbb{R}^n \setminus Z(P)$ that $\gamma$ intersects; that is, we prove that the number of connected components of $(\mathbb{R}^n \setminus Z(P)) \cap \gamma$ is at most $\sim D^{k+r}$. Finally, as applications, we derive Pfaffian versions of Szemeredi-Trotter-type theorems and also prove bounds on the number of joints between Pfaffian curves.

These results, together with some of my other recent work (e.g., bounding the number of distinct distances on plane Pfaffian curves), are steps in a larger program - pushing discrete geometry into settings where the underlying sets need not be algebraic. I will also discuss this broader viewpoint in the talk.

This talk is based on multiple joint works with Saugata Basu, Antonio Lerario, Martin Lotz, Adam Sheffer, and Nicolai Vorobjov.

[1] Larry Guth, Polynomial partitioning for a set of varieties, Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 159, Cambridge University Press, 2015, pp. 459–469.

[2] Larry Guth and Nets Hawk Katz, On the Erdős distinct distances problem in the plane, Annals of
mathematics (2015), 155–190.
 

Subscribe to L3