Fri, 24 Oct 2025
11:00
L3

Higher-Form Anomalies on Lattice

Ryohei Kobayashi
(IAS Princeton)
Abstract
Higher-form symmetry in a tensor product Hilbert space is always emergent: the symmetry generators become genuinely topological only when the Gauss law is energetically enforced at low energies. In this talk, I explain a general method for defining the 't Hooft anomaly of higher-form symmetries in lattice models built on a tensor product Hilbert space. For instance, this allows us to define an index valued in $H^4(B^2G, U(1))$ characterizing the ’t Hooft anomaly of 1-form symmetry (2+1)D, for given finite depth circuits generating the symmetry. I also outline a criteria for “onsiteability” of higher-form symmetry based on an ongoing work with collaborators.


 

Mon, 17 Nov 2025

15:30 - 16:30
L3

Stochastic Graphon Games with Interventions

Eyal NEUMANN
(Imperial College London)
Abstract

We consider targeted intervention problems in dynamic network and graphon games. First, we study a general dynamic network game in which players interact over a graph and seek to maximize their heterogeneous, concave goal functionals. We establish the existence and uniqueness of a Nash equilibrium in both the finite-player network game and the corresponding infinite-player graphon game, and prove its convergence as the number of players tends to infinity. We then introduce a central planner who implements a dynamic targeted intervention. Given a fixed budget, the central planner maximizes the average welfare at equilibrium by perturbing the players' heterogeneous goal functionals. Using a novel fixed-point argument, we prove the existence and uniqueness of an optimal intervention in the graphon setting, and show that it achieves near-optimal performance in large finite networks. Finally, we study the special case of linear-quadratic goal functionals and derive semi-explicit solutions for the optimal intervention.

 

This is a joint work with Sturmius Tuschmann.  


 

Thu, 27 Nov 2025

12:00 - 13:00
L3

OCIAM TBC

Karel Devriendt
((Mathematical Institute University of Oxford))
Thu, 06 Nov 2025
17:00
L3

TBA

Vincenzo Mantova
(University of Leeds)
Abstract
TBA
Thu, 04 Dec 2025
17:00
L3

Sharply k-homogeneous actions on Fraïssé structures

Robert Sullivan
(Charles University, Prague)
Abstract
Given an action of a group G on a relational Fraïssé structure M, we call this action *sharply k-homogeneous* if, for each isomorphism f : A -> B of substructures of M of size k, there is exactly one element of G whose action extends f. This generalises the well-known notion of a sharply k-transitive action on a set, and was previously investigated by Cameron, Macpherson and Cherlin. I will discuss recent results with J. de la Nuez González which show that a wide variety of Fraïssé structures admit sharply k-homogeneous actions for k ≤ 3 by finitely generated virtually free groups. Our results also specialise to the case of sets, giving the first examples of finitely presented non-split infinite groups with sharply 2-transitive/sharply 3-transitive actions.
Tue, 21 Oct 2025

14:00 - 15:00
L3

Optimal control of the Dyson equation and large deviations for Hermitian random matrices

Prof Panagiotis E. Souganidis
(University of Chicago)
Abstract

Using novel arguments as well as techniques developed over the last  twenty years to study mean field games, in this paper (i) we investigate the optimal control of the Dyson equation, which is the mean field equation for the so-called Dyson Brownian motion, that is, the stochastic particle system satisfied by the eigenvalues of large random matrices, (ii) we establish the well-posedness of the resulting infinite dimensional Hamilton-Jacobi equation, 
(iii) we provide a complete and direct proof for the large deviations for the spectrum of large random matrices, and (iv) we study the asymptotic behavior of the transition probabilities of the Dyson Brownian motion.  Joint work with Charles Bertucci and Pierre-Louis Lions.

Tue, 04 Nov 2025
15:30
L3

A Century of Graph Theory

Robin Wilson
(Open University)
Abstract

This illustrated historical talk covers the period from around 1890, when graph theory was still mainly a collection of isolated results, to the 1990s, when it had become part of mainstream mathematics. Among many other topics, it includes material on graph and map colouring, factorisation, trees, graph structure, and graph algorithms. 

 

 

Mon, 03 Nov 2025
15:30
L3

Formalization of Brownian motion in the Lean theorem prover

Remy Degenne
(INRIA LILLE)
Abstract

I will present a collaborative project in which we formalized the construction of Brownian motion in Lean. Lean is an interactive theorem prover, with a large mathematical library called Mathlib. I will give an introduction to Lean and Mathlib, explain why one may want to formalize mathematics, and give a tour of the probability theory part of Mathlib. I will then describe the Brownian motion project, its organization, and some of the formalized results. For that project, we developed the theory of Gaussian measures and implemented a proof of Kolmogorov's extension theorem, as well as a modern version of the Kolmogorov-Chentsov continuity theorem based on Talagrand's chaining technique. Finally, I will discuss the next step of the project: formalizing stochastic integrals.

Fri, 28 Nov 2025

12:00 - 13:15
L3

TBA

Brian Williams
(Boston University)
Subscribe to L3