Thu, 12 Jun 2025
17:00
L3

Hrushovski constructions in ordered fields

Yilong Zhang
(Universitat Bonn)
Abstract
Hrushovski constructions are a variant of amalgamation methods. They were invented to construct new examples of strongly minimal theories. The method was later adapted to expansions of fields, including colored fields and powered fields. In this talk, I will present my attempt to apply Hrushovski constructions to ordered fields. I will construct an expansion of RCF by a dense multiplicative subgroup (green points). Hrushovski constructions induce a back-and-forth system, enabling us to study the dp-rank and the open core of this structure. I will also introduce my recent progress on powered fields, an expansion of RCF by "power functions" on the unit circle, and my plan to axiomatize expansions of the real field using Hrushovski constructions.
Thu, 22 May 2025

17:00 - 18:00
L3

Axioms of Quantum Mechanics in the light of Continuous Model Theory​

Boris Zilber
(University of Oxford)
Abstract

I am going to start by reviewing axioms of quantum mechanics, which in fact give a description of a Hilbert space. I will argue that the language that Dirac and his followers developed is that of continuous logic and the form of axiomatisation is that of "algebraic logic" in the sense of A. Tarski's cylindric algebras. In fact, Hilbert spaces can be seen as a continuous model theory version of cylindric algebras.

Fri, 02 May 2025

14:00 - 15:00
L3

Some theoretical results about responses to inputs and transients in systems biology

Prof Eduardo Sontag
(Departments of Electrical and Computer Engineering and of Bioengineering Northeastern University )
Abstract

This talk will focus on systems-theoretic and control theory tools that help characterize the responses of nonlinear systems to external inputs, with an emphasis on how network structure “motifs” introduce constraints on finite-time, transient behaviors.  Of interest are qualitative features that are unique to nonlinear systems, such as non-harmonic responses to periodic inputs or the invariance to input symmetries. These properties play a key role as tools for model discrimination and reverse engineering in systems biology, as well as in characterizing robustness to disturbances. Our research has been largely motivated by biological problems at all scales, from the molecular (e.g., extracellular ligands affecting signaling and gene networks), to cell populations (e.g., resistance to chemotherapy due to systemic interactions between the immune system and tumors; drug-induced mutations; sensed external molecules triggering activations of specific neurons in worms), to interactions of individuals (e.g., periodic or single-shot non-pharmaceutical “social distancing'” interventions for epidemic control). Subject to time constraints, we'll briefly discuss some of these applications.

Thu, 19 Jun 2025
17:00
L3

Tame valued fields, partial quantifier elimination, and NIP transfer

Sylvy Anscombe
(Université Paris Cité)
Abstract
Work of Kuhlmann and coauthors has established AKE principles for tame and separably tame valued fields, extending for example the work of Delon on the narrower class of algebraically (or separable-algebraically) maximal Kaplansky valued fields. These principles, and their underlying methods, have had striking applications, for example to existential theories of henselian valued fields, the transfer of NIP from residue field to valued field, and the recent work of Jahnke and Kartas on theories of perfectoid fields. The "Generalized Stability Theorem" is even an ingredient in Temkin's inseparable local uniformization. In this talk I want to explain some extensions of the known AKE principles, and related partial results on relative quantifier elimination, all in various special cases. This includes work joint with Boissonneau, and work of Soto Moreno.
Thu, 05 Jun 2025
17:00
L3

Globally valued fields, adelic curves and Siu inequality

Antoine Sedillot
(Universität Regensburg)
Abstract

In this talk, I will introduce the frameworks of globally valued fields (Ben Yaacov-Hrushovski) and adelic curves (Chen-Moriwaki). Both of these frameworks aim at understanding the arithmetic of fields sharing common features with global fields. A lot of examples fit in this scope (e.g. global fields, finitely generated extension of the prime fields, fields of meromorphic functions) and we will try to describe some of them.

Although globally valued fields and adelic curves came from different motivations and might seem quite different, they are related (and even essentially equivalent). This relation opens the door for new methods in the study of global arithmetic. As an application, we will sketch the proof of an arithmetic analogue of Siu inequality in algebraic geometry (a fundamental tool to detect the existence of global sections of line bundles in birational geometry). This is a joint work with Michał Szachniewicz.

Thu, 29 May 2025
17:00
L3

The hierarchy of consistency strengths for membership in a computably enumerable set

Joel David Hamkins
(University of Notre Dame)
Abstract
For a given computably enumerable set W, consider the spectrum of assertions of the form n ∈ W. If W is c.e. but not computably decidable, it is easy to see that many of these statements will be independent of PA, for otherwise we could decide W by searching for proofs of n ∉ W. In this work, we investigate the possible hierarchies of consistency strengths that arise. For example, there is a c.e. set Q for which the consistency strengths of the assertions n ∈ Q are linearly ordered like the rational line. More generally, I shall prove that every computable preorder relation on the natural numbers is realized exactly as the hierarchy of consistency strength for the membership statements n∈W of some computably enumerable set W. After this, we shall consider the c.e. preorder relations. This is joint work with Atticus Stonestrom.
Thu, 15 May 2025
17:00
L3

Feferman's Completeness Theorem

Michael Rathjen
(University of Leeds)
Abstract

Feferman proved in 1962 that any arithmetical theorem is a consequence of a suitable transfinite iteration of uniform reflections. This result is commonly known as Feferman's completeness theorem. The talk aims to give one or two new proofs of Feferman's completeness theorem that, we hope, shed new light on this mysterious and often overlooked result.

Moreover, one of the proofs furnishes sharp bounds on the order types of well-orders necessary to attain completeness.

(This is joint work with Fedor Pakhomov and Dino Rossegger.)

Thu, 08 May 2025
17:00
L3

The tilting equivalence as a bi-interpretation

Thomas Scanlon
(UC Berkeley)
Abstract

In the theory of perfectoid fields, the tilting operation takes a perfectoid field K (a densely normed complete field of positive residue characteristic p for which the map which sends x to its p-th power is surjective as a self-map on O/pO where O is the ring of integers) to its tilt, which is computed as the limit in the category of multiplicative monoids of K under repeated application of the map sending x to its p-th power, and then a natural normed field structure is constructed. It may happen that two non-isomorphic perfectoid fields have isomorphic tilts. The family of characteristic zero untilts of a complete nontrivially normed complete perfect field of positive characteristic are parameterized by the Fargues-Fontaine curve.

Taking into account these parameters, we show that this correspondence between perfectoid fields of mixed characteristic and their tilts may be regarded as a quantifier-free bi-interpretation in continuous logic. The existence of this bi-interpretation allows for some soft proofs of some features of tilting such as the Fontaine-Wintenberger theorem that a perfectoid field and its tilt have isomorphic absolute Galois groups, an approximation lemma for the tilts of definable sets, and identifications of adic spaces.

This is a report on (rather old, mostly from 2016/7) joint work with Silvain Rideau-Kikuchi and Pierre Simon available at https://arxiv.org/html/2505.01321v1 .

Thu, 01 May 2025

17:00 - 18:00
L3

C*-algebras satisfying the UCT form an analytic set

Michał Szachniewicz
(University of Oxford)
Abstract

I will sketch a proof of the statement in the title and outline how it is related to Ehrenfeucht–Fraïssé games on C*-algebras. I will provide the relevant background on C*-algebras (and descriptive set theory) and explain how to construct a standard Borel category X that can play a role of their `moduli'. The theorem from the title is an application of the compactness theorem, for a suitable first-order theory whose models correspond to functors from X. If time permits, I will mention some related problems and connections with conceptual completeness for infinitary logic. This talk is based on several discussions with Ehud Hrushovski, Jennifer Pi, Mira Tartarotti, and Stuart White after a reading group on the paper "Games on AF-algebras" by Ben De Bondt, Andrea Vaccaro, Boban Velickovic and Alessandro Vignati.

Wed, 21 May 2025
14:00
L3

Conformal welding and probability

Prof Steffen Rhode
(University of Washington)
Further Information

Please note: this seminar will be joint with the Mathematics of Random Systems CDT Workshop.

Abstract

Conformal welding, the process of glueing together Riemann surfaces along their boundaries, has recently played a prominent role in probability theory. In this talk, I will discuss two examples, namely the welding associated with random Jordan curves (SLE(k) loops) and particularly their limit as k tends to zero, and the welding of random trees (such as the CRT).

Subscribe to L3