Tue, 08 Jan 2013

15:45 - 16:45
L3

Refined stable pair invariants on local Calabi-Yau threefolds

Jinwon Choi
(University of Illinois at Urbana Champaign)
Abstract

A refinement of the Pandharipande-Thomas stable pair invariants for local toric Calabi-Yau threefolds is defined by what we call the virtual Bialynicki-Birula decomposition. We propose a product formula for the generating function for the refined stable pair invariants extending the motivic product formula of Morrison, Mozgovoy, Nagao, and Szendroi for local ${\bf P}^1$. I will also describe how the proposed product formula is related to the wall crossing in my first talk. This is joint work with Sheldon Katz and Albrecht Klemm.

Tue, 08 Jan 2013

14:00 - 15:00
L3

On the moduli spaces of stable pairs on the projective plane

Jinwon Choi
(University of Illinois at Urbana Champaign)
Abstract

We study the birational relationship between the moduli spaces of $\alpha$-stable pairs and the moduli space $M(d,1)$ of stable sheaves on ${\bf P}^2$ with Hilbert polynomial $dm+1$. We explicitly relate them by birational morphisms when $d=4$ and $5$, and we describe the blow-up centers geometrically. As a byproduct, we obtain the Poincare polynomials of the moduli space of stable sheaves, or equivalently the refined BPS index. This is joint work with Kiryong Chung.

Fri, 14 Dec 2012
16:00
L3

Some results and questions concerning lattices in totally disconnected groups

Tsachik Gelander
(Jersulem)
Abstract

I'll discuss some results about lattices in totally
disconnected locally compact groups, elaborating on the question:
which classical results for lattices in Lie groups can be extended to
general locally compact groups. For example, in contrast to Borel's
theorem that every simple Lie group admits (many) uniform and
non-uniform lattices, there are totally disconnected simple groups
with no lattices. Another example concerns with the theorem of Mostow
that lattices in connected solvable Lie groups are always uniform.
This theorem cannot be extended for general locally compact groups,
but variants of it hold if one implants sufficient assumptions. At
least 90% of what I intend to say is taken from a paper and an
unpublished preprint written jointly with P.E. Caprace, U. Bader and
S. Mozes. If time allows, I will also discuss some basic properties
and questions regarding Invariant Random Subgroups.

Fri, 14 Dec 2012
14:15
L3

Deformations and rigidity of lattices in soluble Lie groups

Benjamin Klopsch
(RHUL and Magdeburg)
Abstract

Let G be a simply connected, solvable Lie group and Γ a lattice in G. The deformation space D(Γ,G) is the orbit space associated to the action of Aut(G) on the space X(Γ,G) of all lattice embeddings of Γ into G. Our main result generalises the classical rigidity theorems of Mal'tsev and Saitô for lattices in nilpotent Lie groups and in solvable Lie groups of real type. We prove that the deformation space of every Zariski-dense lattice Γ in G is finite and Hausdorff, provided that the maximal nilpotent normal subgroup of G is connected.  I will introduce all necessary notions and try to motivate and explain this result.

Fri, 14 Dec 2012
13:00
L3

Cayley graphs of Fuchsian surface groups versus hyperbolic graphs

Caroline Series
(Warwick)
Abstract

Most results about the Cayley graph of a hyperbolic surface group can be replicated in the context of more general hyperbolic groups. In this talk I will discuss two results about such Cayley graphs which I do not know how to replicate in the more general context.

Thu, 29 Nov 2012

14:00 - 15:00
L3

Borcherds-Kac-Moody algebras and Langlands interpolation

Alexandre Bouayad
Abstract

We introduce a deformation process of universal enveloping algebras of Borcherds-Kac-Moody algebras, which generalises quantum groups' one and yields a large class of new algebras called coloured Borcherds-Kac-Moody algebras. The direction of deformation is specified by the choice of a collection of numbers. For example, the natural numbers lead to classical enveloping algebras, while the quantum numbers lead to quantum groups. We prove, in the finite type case, that every coloured BKM algebra have representations which deform representations of semisimple Lie algebras and whose characters are given by the Weyl formula. We prove, in the finite type case, that representations of two isogenic coloured BKM algebras can be interpolated by representations of a third coloured BKM algebra. In particular, we solve conjectures of Frenkel-Hernandez about the Langland duality between representations of quantum groups. We also establish a Langlands duality between representations of classical BKM algebras, extending results of Littelmann and McGerty, and we interpret this duality in terms of quantum interpolation.

Thu, 06 Dec 2012

17:00 - 18:00
L3

An application of proof theory to lattice-ordered groups

George Metcalfe
(Bern)
Abstract

(Joint work with Nikolaos Galatos.) Proof-theoretic methods provide useful tools for tackling problems for many classes of algebras. In particular, Gentzen systems admitting cut-elimination may be used to establish decidability, complexity, amalgamation, admissibility, and generation results for classes of residuated lattices corresponding to substructural logics. However, for classes of algebras bearing a family resemblance to groups, such methods have so far met only with limited success. The main aim of this talk will be to explain how proof-theoretic methods can be used to obtain new syntactic proofs of two core theorems for the class of lattice-ordered groups: namely, Holland's result that this class is generated as a variety by the lattice-ordered group of order-preserving automorphisms of the real numbers, and the decidability of the word problem for free lattice-ordered groups.

Subscribe to L3