Tue, 15 Nov 2011

15:45 - 16:45
L3

Noncommutative mirror symmetry for punctured surfaces

Raf Bocklandt
(Newcastle)
Abstract

A dimer model on a surface with punctures is an embedded quiver such that its vertices correspond to the punctures and the arrows circle round the faces they cut out. To any dimer model Q we can associate two categories: A wrapped Fukaya category F(Q), and a category of matrix factorizations M(Q). In both categories the objects are arrows, which are interpreted as Lagrangian subvarieties in F(Q) and will give us certain matrix factorizations of a potential on the Jacobi algebra of the dimer in M(Q).

We show that there is a duality D on the set of all dimers such that for consistent dimers the category of matrix factorizations M(Q) is isomorphic to the Fukaya category of its dual,  F((DQ)). We also discuss the connection with classical mirror symmetry.

Tue, 22 Nov 2011

14:30 - 15:30
L3

Structure and the Fourier transform

Tom Sanders
(Oxford)
Abstract

We shall discuss how the algebra norm can be used to identify structure in groups. No prior familiarity with the area will be assumed.

Tue, 15 Nov 2011

14:30 - 15:30
L3

Independent sets in hypergraphs

Wojciech Samotij
(Cambridge)
Abstract

We say that a hypergraph is \emph{stable} if each sufficiently large subset of its vertices either spans many hyperedges or is very structured. Hypergraphs that arise naturally in many classical settings posses the above property. For example, the famous stability theorem of Erdos and Simonovits and the triangle removal lemma of Ruzsa and Szemeredi imply that the hypergraph on the vertex set $E(K_n)$ whose hyperedges are the edge sets of all triangles in $K_n$ is stable. In the talk, we will present the following general theorem: If $(H_n)_n$ is a sequence of stable hypergraphs satisfying certain technical conditions, then a typical (i.e., uniform random) $m$-element independent set of $H_n$ is very structured, provided that $m$ is sufficiently large. The above abstract theorem has many interesting corollaries, some of which we will discuss. Among other things, it implies sharp bounds on the number of sum-free sets in a large class of finite Abelian groups and gives an alternate proof of Szemeredi’s theorem on arithmetic progressions in random subsets of integers.

Joint work with Noga Alon, Jozsef Balogh, and Robert Morris.

Tue, 08 Nov 2011

14:30 - 15:30
L3

Embedding trees in sparse graphs

Diana Piguet
(Birmingham)
Abstract

An embedding of a graph H in a graph G is an injective mapping of the vertices of H to the vertices of G such that edges of H are mapped to edges of G. Embedding problems have been extensively studied. A very powerful tool in this area is Szemeredi's Regularity Temma. It approximates the host graph G by a quasirandom graph which inherits many of the properties of G. Unfortunately the direct use of Szemeredi's Regularity Lemma is useless if the host graph G is sparse.

During the talk I shall expose a technique to deal with embedding trees in sparse graphs. This technique has been developed by Ajtai, Komlos,Simonovits and Szemeredi to solve the Erdos-Sos conjecture. Presently the author together with Hladky, Komlos, Simonovits, Stein and Szemeredi apply this method to solve the related conjecture of Loebl, Komlos and Sos (approximate version).

Mon, 31 Oct 2011
14:15
L3

Hyperkahler implosion

Frances Kirwan
Abstract

Symplectic implosion is a construction in symplectic geometry due to Guillemin, Jeffrey and Sjamaar, which is related to geometric invariant theory for non-reductive group actions in algebraic geometry. This talk (based on joint work in progress with Andrew Dancer and Andrew Swann) is concerned with an analogous construction in hyperkahler geometry.

Mon, 07 Nov 2011
15:45
L3

Right-angled Artin groups and their automorphisms

Ric Wade
(Oxford)
Abstract

Automorphisms of right-angled Artin groups interpolate between $Out(F_n)$ and $GL_n(\mathbb{Z})$. An active area of current research is to extend properties that hold for both the above groups to $Out(A_\Gamma)$ for a general RAAG. After a short survey on the state of the art, we will describe our recent contribution to this program: a study of how higher-rank lattices can act on RAAGs that builds on the work of Margulis in the free abelian case, and of Bridson and the author in the free group case.

Mon, 24 Oct 2011
15:45
L3

Asymptotic dimension for CAT(0) cube complexes

Nick Wright
(Southampton)
Abstract

In this talk I'll explain how to build CAT(0) cube complexes and construct Lipschitz maps between them. The existence of suitable Lipschitz maps is used to prove that the asymptotic dimension of a

CAT(0) cube complex is no more than its dimension.

Tue, 25 Oct 2011

14:30 - 15:30
L3

The board game Hex – history, results, problems

Bjarne Toft
(University of Southern Denmark)
Abstract

Hex was discovered independently by Piet Hein in Copenhagen in 1942 and byJohn Nash in Princeton in 1948.  The game is interesting because its rules are very simple, yet it is not known how to play best possible.  For example, a winning first move for the first player (who does have  a winning strategy) is still unknown. The talk will tell the history of the game and give simple proofs for basic results about it. Also the reverse game of HEX,sometimes called REX, will be discussed. New results about REX are under publication in Discrete Mathematics in a paper:  How to play Reverse Hex (joint work with Ryan Hayward and Phillip Henderson).

Tue, 18 Oct 2011

14:30 - 15:30
L3

LMS Aitken Lecture: "Well-quasi-ordering Binary Matroids"

Professor Geoff Whittle
(Victoria University of Wellington)
Abstract

The Graph Minors Project of Robertson and Seymour is one of the highlights of twentieth-century mathematics. In a long series of mostly difficult papers they prove theorems that give profound insight into the qualitative structure of members of proper minor-closed classes of graphs. This insight enables them to prove some remarkable banner theorems, one of which is that in any infinite set of graphs there is one that is a minor of the other; in other words, graphs are well-quasi-ordered under the minor order.
A canonical way to obtain a matroid is from a set of columns of a matrix over a field. If each column has at most two nonzero entries there is an obvious graph associated with the matroid; thus it is not hard to see that matroids generalise graphs. Robertson and Seymour always believed that their results were special cases of more general theorems for matroids obtained from matrices over nite elds. For over a decade, Jim Geelen, Bert Gerards and I have been working towards achieving this generalisation. In this talk I will discuss our success in achieving the generalisation for binary matroids, that is, for matroids that can be obtained from matrices over the 2-element field.
In this talk I will give a very general overview of my work with Geelen and Gerards. I will not assume familiarity with matroids nor will I assume familiarity with the results of the Graph Minors Project
Subscribe to L3