Thu, 13 Nov 2025
14:00
L4

Thermal correlators, QNMs and signatures of bulk black holes

Robin Karlsson
Abstract

I will discuss some of my work on thermal correlators in AdS/CFT. In particular, given a thermal correlator, how are the characteristic properties of bulk black holes encoded in such correlators? This includes exploring the spectrum of QNMs, the so-called thermal product formula, the photon ring, and geodesics bouncing off the black hole singularity. I will discuss how the latter might change when finite string effects are considered.

Thu, 06 Nov 2025
14:00
L4

Journal Club Cancelled

Abstract

There will be no journal club this week to avoid conflicting with FPUK.

Thu, 30 Oct 2025
14:00
L4

Sine dilaton gravity: wormholes, finite matrices and q-holography

Jacopo Papalini (Ghent University)
Abstract

I will discuss a two-dimensional dilaton gravity theory with a sine potential. At the disk level, this theory admits a microscopic holographic realization as the double-scaled SYK model. Remarkably, in the open channel canonical quantization of the theory, the momentum conjugate to the length of two-sided Cauchy slices becomes periodic. As a result, the ERB length in sine dilaton gravity is discretized upon gauging this symmetry. For closed Cauchy slices, a similar discretization occurs in the physical Hilbert space, corresponding to a discrete spectrum for the length of the necks of trumpet geometries. By appropriately gluing two such trumpets together, one can then construct a wormhole geometry in sine dilaton gravity, whose amplitude matches the spectral correlation functions of a one-cut matrix integral. This correspondence suggests that the theory provides a path integral formulation of q-deformed JT gravity, where the matrix size is large but finite. Finally, I will describe how this theory of gravity can be regarded as a realization of q-deformed holography and propose a possible implementation of this framework to study the near-horizon dynamics of near-extremal de Sitter black holes.

Thu, 23 Oct 2025
14:00
L4

Multifold Schwinger-Keldysh EFT -- what I understand and what I don't

Akash Jain
Abstract

The organisers asked me to give a brief talk on what I’ve been thinking about lately. So, I’ll tell you about Schwinger-Keldysh EFTs: an EFT framework for non-equilibrium dissipative systems such as hydrodynamics. These are built on a closed-time contour that runs forward and backward in time, allowing access to a variety of non-equilibrium observables. However, these EFTs fundamentally miss a wider class of observables, called out-of-time-ordered correlators (OTOCs), which are closely tied to quantum chaos. In this talk, I’ll share some thoughts on extending Schwinger-Keldysh EFTs to multifold contours that capture such observables. I’ll also touch on the discrete KMS symmetry of thermal systems, which generalises from Z_2 in the single-fold case to the dihedral group in the -fold case. With any luck, I’ll reach the point where I’m stuck and you can help me figure it out.

Tue, 21 Oct 2025

14:00 - 15:00
L4

Algebraic relations for permutons

Omer Angel
(University of British Columbia)
Abstract

Permutons are a framework set up for understanding large permutations, and are instrumental in pattern densities. However, they miss most of the algebraic properties of permutations. I will discuss what can still be said in this direction, and some possible ways to move beyond permutons. Joint with Fiona Skerman and Peter Winkler.

Tue, 14 Oct 2025

14:00 - 15:00
L4

An exponential upper bound on induced Ramsey numbers

Marcelo Campos
(Instituto Nacional de Matemática Pura e Aplicada (IMPA))
Abstract
The induced Ramsey number $R_{ind}(H)$ of a graph $H$ is the minimum number $N$ such that there exists a graph with $N$ vertices for which all red/blue colorings of its edges contain a monochromatic induced copy of $H$. In this talk I'll show there exists an absolute constant $C > 0$ such that, for every graph $H$ on $k$ vertices, these numbers satisfy $R_{ind}(H) ≤ 2^{Ck}$. This resolves a conjecture of Erdős from 1975.
 
This is joint work with Lucas Aragão, Gabriel Dahia, Rafael Filipe and João Marciano.
Mon, 17 Nov 2025

16:30 - 17:30
L4

Existence and nonexistence for equations of fluctuating hydrodynamics

Prof Johannes Zimmer
( TU-Munich)
Abstract

Equations of fluctuating hydrodynamics, also called Dean-Kawasaki type equations, are stochastic PDEs describing the evolution of finitely many interacting particles which obey a Langevin equation. First, we give a mathematical derivation for such equations. The focus is on systems of interacting particles described by second order Langevin equations. For such systems,  the equations of fluctuating hydrodynamics are a stochastic variant of Vlasov-Fokker-Planck equations, where the noise is white in space and time, conservative and multiplicative. We show a dichotomy previously known for purely diffusive systems holds here as well: Solutions exist only for suitable atomic initial data, but provably not for any other initial data. The class of systems covered includes several models of active matter. We will also discuss regularisations, where existence results hold under weaker assumptions. 

Mon, 27 Oct 2025

16:30 - 17:30
L4

Spatially-extended mean-field PDEs as universal limits of large, heterogeneous networks of spiking neurons

Dr Valentin Schmutz
(University College London)
Abstract

The dynamics of spatially-structured networks of N interacting stochastic neurons can be described by deterministic population equations in the mean-field limit. While this is known, a general question has remained unanswered: does synaptic weight scaling suffice, by itself, to guarantee the convergence of network dynamics to a deterministic population equation, even when networks are not assumed to be homogeneous or spatially structured? In this work, we consider networks of stochastic integrate-and-fire neurons with arbitrary synaptic weights satisfying a O(1/N) scaling condition. Borrowing results from the theory of dense graph limits, or graphons, we prove that, as N tends to infinity, and up to the extraction of a subsequence, the empirical measure of the neurons' membrane potentials converges to the solution of a spatially-extended mean-field partial differential equation (PDE). Our proof requires analytical techniques that go beyond standard propagation of chaos methods. In particular, we introduce a weak metric that depends on the dense graph limit kernel and we show how the weak convergence of the initial data can be obtained by propagating the regularity of the limit kernel along the dual-backward equation associated with the spatially-extended mean-field PDE. Overall, this result invites us to reinterpret spatially-extended population equations as universal mean-field limits of networks of neurons with O(1/N) synaptic weight scaling. This work was done in collaboration with Pierre-Emmanuel Jabin (Penn State) and Datong Zhou (Sorbonne Université).

Tue, 28 Oct 2025
15:30
L4

Nearly G2-structures and G2-Laplacian co-flows

Jakob Stein
(State University of Campinas and University of Oxford)
Abstract

Nearly $G_2$-structures in dimension seven are, up to scaling, critical points of a geometric flow called (modified) Laplacian co-flow. Moreover, since nearly $G_2$-structures define Einstein metrics, they can also be associated to critical points of the volume-normalised Ricci flow. In this talk, we will discuss a recent joint work with Jason Lotay, showing that many of these nearly $G_2$ critical points are unstable for the modified co-flow, and giving a lower bound on the index.

Tue, 04 Nov 2025
15:30
L4

Intrinsic Donaldson–Thomas theory

Chenjing Bu
(Oxford)
Abstract

In this talk, I will introduce a new framework for working with moduli stacks in enumerative geometry, aimed at generalizing existing theories of enumerative invariants counting objects in linear categories, such as Donaldson–Thomas theory, to general, non-linear moduli stacks. This involves a combinatorial object called the component lattice, which is a globalization of the cocharacter lattice and the Weyl group of an algebraic group.

Several important results and constructions known in linear enumerative geometry can be extended to general stacks using this framework. For example, Donaldson–Thomas invariants can be defined for a general class of stacks, not only linear ones such as moduli stacks of sheaves. As another application, under certain assumptions, the cohomology of a stack, which is often infinite-dimensional, decomposes into finite-dimensional pieces carrying enumerative information, called BPS cohomology, generalizing a result of Davison–Meinhardt in the linear case.

This talk is based on joint works with Ben Davison, Daniel Halpern-Leistner, Andrés Ibáñez Núñez, Tasuki Kinjo, and Tudor Pădurariu.

Subscribe to L4