11:00
11:00
14:00
On the Categorical ’t Hooft Expansion
Abstract
The ’t Hooft expansion is a powerful organizational framework for understanding QFTs as perturbations away from the large N limit and has deep connections to string theory and holography. In this talk, I will discuss categorical aspects of the ’t Hooft expansion, i.e. what one learns about topological defects from the ’t Hooft expansion and, correspondingly, topological strings and twisted holography. This talk is based off the paper arXiv:2411.00760 from last year as well as the more recent review paper arXiv:2511.19776.
14:00
Super-(conformal) monodromy defects
Abstract
14:00
Thermal correlators, QNMs and signatures of bulk black holes
Abstract
I will discuss some of my work on thermal correlators in AdS/CFT. In particular, given a thermal correlator, how are the characteristic properties of bulk black holes encoded in such correlators? This includes exploring the spectrum of QNMs, the so-called thermal product formula, the photon ring, and geodesics bouncing off the black hole singularity. I will discuss how the latter might change when finite string effects are considered.
14:00
Journal Club Cancelled
Abstract
There will be no journal club this week to avoid conflicting with FPUK.
14:00
Sine dilaton gravity: wormholes, finite matrices and q-holography
Abstract
I will discuss a two-dimensional dilaton gravity theory with a sine potential. At the disk level, this theory admits a microscopic holographic realization as the double-scaled SYK model. Remarkably, in the open channel canonical quantization of the theory, the momentum conjugate to the length of two-sided Cauchy slices becomes periodic. As a result, the ERB length in sine dilaton gravity is discretized upon gauging this symmetry. For closed Cauchy slices, a similar discretization occurs in the physical Hilbert space, corresponding to a discrete spectrum for the length of the necks of trumpet geometries. By appropriately gluing two such trumpets together, one can then construct a wormhole geometry in sine dilaton gravity, whose amplitude matches the spectral correlation functions of a one-cut matrix integral. This correspondence suggests that the theory provides a path integral formulation of q-deformed JT gravity, where the matrix size is large but finite. Finally, I will describe how this theory of gravity can be regarded as a realization of q-deformed holography and propose a possible implementation of this framework to study the near-horizon dynamics of near-extremal de Sitter black holes.
14:00
Multifold Schwinger-Keldysh EFT -- what I understand and what I don't
Abstract
The organisers asked me to give a brief talk on what I’ve been thinking about lately. So, I’ll tell you about Schwinger-Keldysh EFTs: an EFT framework for non-equilibrium dissipative systems such as hydrodynamics. These are built on a closed-time contour that runs forward and backward in time, allowing access to a variety of non-equilibrium observables. However, these EFTs fundamentally miss a wider class of observables, called out-of-time-ordered correlators (OTOCs), which are closely tied to quantum chaos. In this talk, I’ll share some thoughts on extending Schwinger-Keldysh EFTs to multifold contours that capture such observables. I’ll also touch on the discrete KMS symmetry of thermal systems, which generalises from Z_2 in the single-fold case to the dihedral group in the -fold case. With any luck, I’ll reach the point where I’m stuck and you can help me figure it out.
Algebraic relations for permutons
Abstract
Permutons are a framework set up for understanding large permutations, and are instrumental in pattern densities. However, they miss most of the algebraic properties of permutations. I will discuss what can still be said in this direction, and some possible ways to move beyond permutons. Joint with Fiona Skerman and Peter Winkler.
An exponential upper bound on induced Ramsey numbers
Abstract
Existence and nonexistence for equations of fluctuating hydrodynamics
Abstract
Equations of fluctuating hydrodynamics, also called Dean-Kawasaki type equations, are stochastic PDEs describing the evolution of finitely many interacting particles which obey a Langevin equation. First, we give a mathematical derivation for such equations. The focus is on systems of interacting particles described by second order Langevin equations. For such systems, the equations of fluctuating hydrodynamics are a stochastic variant of Vlasov-Fokker-Planck equations, where the noise is white in space and time, conservative and multiplicative. We show a dichotomy previously known for purely diffusive systems holds here as well: Solutions exist only for suitable atomic initial data, but provably not for any other initial data. The class of systems covered includes several models of active matter. We will also discuss regularisations, where existence results hold under weaker assumptions.