Forthcoming events in this series


Fri, 26 Jan 2018

16:00 - 17:00
L1

Panel Discussion - Careers outside Academia

Abstract

A panel discussion and Q&A, looking at some of the challenges and opportunities available for mathematicians outside universities. Featuring:

Madeleine Copin – North London Collegiate School
Josephine French – Health Data Insight, working in partnership with Public Health England
Martin Gould – Spotify
Dan Jones – Quadrature Capital
Adam Sardar – e-therapeutics

Fri, 19 Jan 2018

16:00 - 17:00
L1

Owning a successful DPhil

Dan Ciubotaru, Philip Maini, Thomas Wasserman, Renee Hoekzema, Jaroslav Fowkes, Carolina Matte Gregory
Abstract

Wondering about how to organise your DPhil? How to make the most of your supervision meetings?

In this session we will explore these and other questions related to what makes a successful DPhil with help from faculty members, postdocs and DPhil students.

  • In the first half of the session Dan Ciubotaru and Philip Maini will give short talks on their experiences as PhD students and supervisors.
  • The second part of the session will be a panel discussion with final-year Dphil students and early postdocs.

The panel will consist of Thomas Wasserman, Renee Hoekzema, Jaroslav Fowkes and Carolina Matte Gregory. Senior faculty members will be kindly asked to leave the lecture theatre to ensure that students feel comfortable discussing their experiences with other students and postdocs without any senior faculty present.

Fri, 24 Nov 2017
16:00
L1

North meets South Colloquium

Richard Wade and Andrey Kormilitzin
Abstract

Richard Wade:   Classifying spaces, automorphisms, and right-angled Artin groups 

Right-angled Artin groups (otherwise known as partially commutative groups, or graph groups), interpolate between free abelian groups and free groups. These groups have seen a lot of attention recently, much of this due to some surprising links to the world of hyperbolic 3-manifolds.We will look at classifying spaces for such groups and their associated automorphism groups. These spaces are useful as they give a topological way to understand algebraic invariants of groups. This leads us to study some beautiful mathematical objects: deformation spaces of tori and trees. We will look at some recent results that aim to bridge the gap between these two families of spaces.
 
Andrey Kormilitzin:   Learning from electronic health records using the theory of rough paths

In this talk, we bring the theory of rough paths to the study of non-parametric statistics on streamed data and particularly to the problem of regression and classification, where the input variable is a stream of information, and the dependent response is also (potentially) a path or a stream.  We informally explain how a certain graded feature set of a stream, known in the rough path literature as the signature of the path, has a universality that allows one to characterise the functional relationship summarising the conditional distribution of the dependent response. At the same time this feature set allows explicit computational approaches through machine learning algorithms.

Finally, the signature-based modelling can be applied to some real-world problems in medicine, in particular in mental health and gastro-enterology.

Fri, 10 Nov 2017
16:00
L1

North meets South Colloquium

Laura Capuano and Noemi Picco
(Oxford)
Abstract

Laura Capuano's talk 'Pell equations and continued fractions in number theory'

The classical Pell equation has an extraordinary long history and it is very useful in many different areas of number theory. For example, they given a way to write a prime congruent to 1 modulo 4 as a sum of two squares, or they can also be used to break RSA excryption when the decription key is too small. In this talk, I will present some properties of this wonderful equation and its relation with continued fractions. I will also treat the case of Pell equations in other contexts, such as the ring of polynomials, showing the differences with the classical case. 

Noemi Picco's talk 'Cortical neurogenesis: how humans (and mathematicians) can do more than macaque, with less'

The cerebral cortex is perhaps the crowning achievement of evolution and is the region of the brain that distinguishes us from other species. Studying the developmental programmes that generate cortices of different sizes and neuron counts, is the key to understanding both brain evolution and disease. I will show what mathematical modeling has to say about cortex evolution, when data resolution is poor. I will then discuss why humans are so special in the way they create their cortex, and how we are just like everybody else in many other aspects of brain development.

Fri, 16 Jun 2017

16:00 - 17:00
L1

North meets South Colloquium

Lisa Lamberti + Jaroslav Fowkes
(Mathematical Insitute, Oxford)
Abstract

Lisa Lamberti

No image

Geometric models in algebra and beyond

Many phenomena in mathematics and related sciences are described by geometrical models.

In this talk, we will see how triangulations in polytopes can be used to uncover combinatorial structures in algebras. We will also glimpse at possible generalizations and open questions, as well as some applications of geometric models in other disciplines.

Jaroslav Fowkes

[[{"fid":"47972","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Jaroslav Fowkes","field_file_image_title_text[und][0][value]":"Jaroslav Fowkes"},"type":"media","attributes":{"alt":"Jaroslav Fowkes","title":"Jaroslav Fowkes","height":"258","width":"258","class":"media-element file-media-square"}}]]

Optimization Challenges in the Commercial Aviation Sector

The commercial aviation sector is a low-margin business with high fixed costs, namely operating the aircraft themselves. It is therefore of great importance for an airline to maximize passenger capacity on its route network. The majority of existing full-service airlines use largely outdated capacity allocation models based on customer segmentation and fixed, pre-determined price levels. Low-cost airlines, on the other hand, mostly fly single-leg routes and have been using dynamic pricing models to control demand by setting prices in real-time. In this talk, I will review our recent research on dynamic pricing models for the Emirates route network which, unlike that of most low-cost airlines, has multiple routes traversing (and therefore competing for) the same leg.

Fri, 02 Jun 2017

16:00 - 17:00
L1

How to shine in an interview

Rachel Bray
(Careers Service University of Oxford)
Abstract

In this session we will refresh our understanding of the purpose of an interview, review some top tips, and practise answering some typical interview questions. Rachel will also signpost further resources on interview preparation available at the Careers Service.

Fri, 26 May 2017

16:00 - 17:00
L1

North meets South Colloquium

Erik Panzer + Yuji Nakatsukasa
(Mathematical Institute, University of Oxford)
Abstract

Erik

Erik Panzer

Feynman integrals, graph polynomials and zeta values

Where do particle physicists, algebraic geometers and number theorists meet?

Feynman integrals compute how elementary particles interact and they are fundamental for our understanding of collider experiments. At the same time, they provide a rich family of special functions that are defined as period integrals, including special values of certain L functions.

In the talk I will give the definition of Feynman integrals via graph polynomials and discuss some examples that evaluate to values of the Riemann zeta function. Then I will discuss some of the interesting questions in this field and mention some of the techniques that are used to study these.

 

[[{"fid":"47855","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Yuji Nakatsukasa","field_file_image_title_text[und][0][value]":"Yuji Nakatsukasa"},"type":"media","attributes":{"alt":"Yuji Nakatsukasa","title":"Yuji Nakatsukasa","height":"258","width":"258","class":"media-element file-media-square"}}]]

Yuji Nakatsukasa

Computing matrix eigenvalues

The numerical linear algebra community solves two main problems: linear systems, and eigenvalue problems. They are both vastly important; it would not be too far-fetched to say that most (continuous) problems in scientific computing eventually boil down to one or both of these.

This talk focuses on eigenvalue problems. I will first describe some of their applications, such as Google's PageRank, PCA, finding zeros and poles of functions, and global optimization. I will then turn to algorithms for computing eigenvalues, namely the classical QR algorithm---which is still the basis for state-of-the-art. I will emphasize that the underlying mathematics is (together with the power method and numerical stability analysis) rational approximation theory.

Fri, 19 May 2017

16:00 - 17:00
L1

A conversation with Uta Frith and Maria Bruna

Professor Uta Frith and Dr Maria Bruna
Abstract

Professor Uta Frith FRS is a distinguished developmental psychologist who is well known for her pioneering research on autism spectrum disorders. She also has a long-standing interest in matters relating to diversity in science, and is the Chair of the Royal Society's Diversity Committee. Oxford Mathematician Dr Maria Bruna is a Junior Research Fellow in Mathematics at St John's College, and has won prizes such as the L'Oréal-UNESCO UK and Ireland For Women in Science Fellowship and the Olga Taussky Pauli Fellowship, Wolfgang Pauli Institute. This informal discussion will no doubt include a range of topics -- but it is hard to say in advance where the conversation might go!

Fri, 05 May 2017

16:00 - 17:00
L1

Managing expectations

Alan Percy
(Counselling Service University of Oxford)
Abstract

Alan is the Head of Counselling at the University of Oxford.  He will talk about the importance of managing expectations and not having rigid expectations, about challenging perfectionism, and about building emotional resilience through adaptability and compassion.

Fri, 21 Apr 2017

16:00 - 17:00
L1

3 minutes to explain your work

Dyrol Lumbard and Vicky Neale
Abstract

Research takes a long time while the attention span of the world is apparently decreasing, so today's researchers need to be able to get their message across quickly and succinctly. In this session we'll share some tips on how to communicate the key messages of your work in just a few minutes, and give you a chance to have a go yourself.  This will be helpful for job and funding applications and interviews, and also for public engagement. In September there will be an opportunity to do it for real, for our alumni, when we'll showcase Oxford Mathematics at the Alumni Weekend.

Fri, 10 Mar 2017

16:00 - 17:00
L1

North meets South Colloquium

Daniele Celoria + Mariano Beguerisse
(Mathematical Institute, Oxford)
Abstract

Categorification of knot polynomials -- Daniele Celoria

Classically, the most powerful and versatile knot invariants take the form of polynomials. These can usually be defined by simple recursive equations, known as skein relations; after giving the main examples of polynomial knot invariants (Alexander and Jones polynomials), we are going to informally introduce categorifications. Finally we are going to present the Knot Floer and the Khovanov homologies, and show that they provide a categorification of the aforementioned polynomial knot invariants.

Network science for online social media: an x-ray or a stethoscope for society -- Mariano Beguerisse

No image

The abundance of data from social media outlets such as Twitter provides the opportunity to perform research at a societal level at a scale unforeseen. This has spurred the development of mathematical and computational methods such as network science, which uses the formalism and language of graph theory to study large systems of interacting agents. In this talk, I will provide a sketch of network science and its application to study online social media. A number of different networks can be constructed from Twitter data, which can be used to ask questions about users, ranging from the structural (an 'x-ray' to see how societies are connected online) to the topical ('stethoscope' to feel how users interact in the context of specific event). I will provide concrete examples from the UK riots of 2011, applications to medical anthropology, and political referenda, and will also highlight distinct challenges such as the directionality of connections, the size of the network, the use of temporal information and text, all of which are active areas of research.

Fri, 24 Feb 2017

16:00 - 17:00
L1

Negotiation

Alison Trinder and Dave Hewett
Abstract

Do you find yourself agreeing to things when actually you want more – or less? In this session we will look at how to be clear about what you want, and how to use assertiveness and negotiation skills and strategies to achieve win-win outcomes when working with others. 

Fri, 17 Feb 2017

17:00 - 18:00
L2

InFoMM The Reddick Lecture

Tom Hebbert
(Supply Chain Director at Tesco PLC)
Abstract

Data science: The secret to unlocking operational performance within the UK’s largest retail supply chain

 

Chris Reddick was instrumental in setting up the InFoMM CDT. After helping secure the EPSRC funding he chaired the Industrial Engagement Committee and supported the CDT in all its Industrial relations. The success of the CDT, as evidenced by the current size of the industrial partnership and the vibrant programme we have developed, is in no small part due to Chris' charm, vision, and tenacity.

Fri, 17 Feb 2017

16:00 - 17:00
L1

Why bother with divisional training and development?

Justin Hutchence
(MPLS Division University of Oxford)
Abstract

This session will look at the range of courses available to early career researchers and graduate students from MPLS. It will also discuss the benefits of training and development for researchers and how it can help you in enhancing your career inside and outside academia.
 

Fri, 03 Feb 2017

16:00 - 17:00
L1

Careers beyond academia: a panel discussion

Abstract

Featuring
Peter Grindrod, Director of the Oxford-Emirates Data Science Lab, Oxford Mathematical Institute

 I am an innovator and a strategist.


Geraint Lloyd, Senior Software Engineer, Schlumberger

[[{"fid":"45910","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Geraint Lloyd","field_file_image_title_text[und][0][value]":"Geraint Lloyd"},"type":"media","attributes":{"alt":"Geraint Lloyd","title":"Geraint Lloyd","height":"258","width":"258","class":"media-element file-media-square"}}]]

Mick Pont, VP Research and Development, Numerical Algorithms Group (NAG)

[[{"fid":"45911","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Mick Pont","field_file_image_title_text[und][0][value]":"Mick Pont"},"type":"media","attributes":{"alt":"Mick Pont","title":"Mick Pont","height":"258","width":"258","class":"media-element file-media-square"}}]]

Anna Railton, Technical Staff, Smith Institute

[[{"fid":"45912","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Anna Railton","field_file_image_title_text[und][0][value]":"Anna Railton"},"type":"media","attributes":{"alt":"Anna Railton","title":"Anna Railton","height":"258","width":"258","class":"media-element file-media-square"}}]]
Michele Taroni, Senior Project Manager, Roxar

[[{"fid":"45913","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Michele Taroni","field_file_image_title_text[und][0][value]":"Michele Taroni"},"type":"media","attributes":{"alt":"Michele Taroni","title":"Michele Taroni","height":"258","width":"258","class":"media-element file-media-square"}}]]

Fri, 20 Jan 2017

16:00 - 17:00
L1

North meets South Colloquium

David Hume + Neave O'Clery
(Mathematical Institute, Oxford)
Abstract

A continuum of expanders -- David Hume

No image

Expanders are a holy grail of networking; robustly connected networks of arbitrary size which require minimal resources. Like the grail, they are also notoriously difficult to construct. In this talk I will introduce expanders, give a brief overview of just a few aspects of their diverse history, and outline a very recent result of mine, which states that there are a continuum of expanders with fundamentally different large-scale geometry.

What makes cities successful? A complex systems approach to modelling urban economies -- Neave O'Clery

Image of Neave O'Clery

Urban centres draw a diverse range of people, attracted by opportunity, amenities, and the energy of crowds. Yet, while benefiting from density and proximity of people, cities also suffer from issues surrounding crime, congestion and density. Seeking to uncover the mechanisms behind the success of cities using novel tools from the mathematical and data sciences, this work uses network techniques to model the opportunity landscape of cities. Under the theory that cities move into new economic activities that share inputs with existing capabilities, path dependent industrial diversification can be described using a network of industries. Edges represent shared necessary capabilities, and are empirically estimated via flows of workers moving between industries. The position of a city in this network (i.e., the subnetwork of its current industries) will determine its future diversification potential. A city located in a central well-connected region has many options, but one with only few peripheral industries has limited opportunities.

We develop this framework to explain the large variation in labour formality rates across cities in the developing world, using data from Colombia. We show that, as cities become larger, they move into increasingly complex industries as firms combine complementary capabilities derived from a more diverse pool of workers. We further show that a level of agglomeration equivalent to between 45 and 75 minutes of commuting time maximizes the ability of cities to generate formal employment using the variety of skills available. Our results suggest that rather than discouraging the expansion of metropolitan areas, cities should invest in transportation to enable firms to take advantage of urban diversity.

This talk will be based on joint work with Eduardo Lora and Andres Gomez at Harvard University.

Fri, 25 Nov 2016

16:00 - 17:00
L1

Academic careers: a panel discussion

Abstract

Featuring

Professor Alison Etheridge, Professor of Probability in the Mathematical Institute and Department of Statistics, Oxford

Professor Ben Green, Waynflete Professor of Pure Mathematics, Oxford

Picture of Ben Green

Dr Heather Harrington, Royal Society University Research Fellow in the Mathematical Institute, Oxford

Image of Prof. Heather Harrington

Professor Jon Keating, Henry Overton Wills Professor of Mathematics, Bristol and Chair of the Heilbronn Institute for Mathematical Research

[[{"fid":"23604","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Jon Keating","field_file_image_title_text[und][0][value]":"Jon Keating"},"type":"media","attributes":{"alt":"Jon Keating","title":"Jon Keating","height":"258","width":"258","class":"media-element file-media-square"}}]]

Dr Christopher Voyce, Head of Research Facilitation in the Mathematical Institute, Oxford

image

Fri, 18 Nov 2016

16:00 - 17:00
L1

North meets South Colloquium

James Maynard + Thomas Woolley
(Mathematical Institute, Oxford)
Abstract

Approximate prime numbers -- James Maynard

I will talk about the idea of an 'almost prime' number, and how this can be used to make progress on some famous problems about the primes themselves.

Mathematical biology: An early career retrospective -- Thomas Woolley

No image

Since 2008 Thomas has focused his attention to the application of mathematical techniques to biological problems. Through numerous fruitful collaborations he has been extremely fortunate to work alongside some amazing researchers. But what has he done in the last 8 years? What lessons has he learnt? What knowledge has he produced?

This talk will encompass a brief overview of a range of applications, from animal skin patterns to cellular mechanics, via zombies and Godzilla.

Fri, 11 Nov 2016

16:00 - 17:00
L1

Owning a successful DPhil

Abstract

Wondering about how to organise your DPhil? How to make the most of your supervision meetings? How to guarantee success in your studies? Look no further!

In this session we will explore the fundamentals of a successful DPhil with help from faculty members, postdocs and DPhil students.

In the first half of the session Andreas Münch, the Director of Graduate Studies, will give a brief overview of the stages of the DPhil programme in Oxford; after this Marc Lackenby will talk about his experience as a PhD student and supervisor.

The second part of the session will be a panel discussion, with panel members Lucy Hutchinson, Mark Penney, Michal Przykucki, and Thomas Woolley. Senior faculty members will be kindly asked to leave the lecture theatre to ensure that students feel comfortable about discussing their experiences with later year students and postdocs/research fellows.

At 5pm senior and junior faculty members, postdocs and students will reunite in the Common Room for Happy Hour.

About the speakers and panel members:

Andreas Münch received his PhD from the Technical University of Munich under the supervision of Karl-Heinz Hoffmann. He moved to Oxford in 2009, where he is an Associate Professor in Applied Mathematics. As the Director of Graduate Studies he deals with matters related to training and education of graduate students. 

Marc Lackenby received his PhD from Cambridge under the supervision of W. B. Raymond Lickorish. He moved to Oxford in 1999, where he has been a Professor of Mathematics since 2006. 

Marc Lackenby

Lucy Hutchinson is a DPhil student in the Mathematical Biology group studying her final year.

No image

Mark Penney is a fourth-year DPhil student in the Topology group.

Michal Przykucki received his PhD from Cambridge in 2013 under the supervision of Béla Bollobás; he is a member of the Combinatorics research group, and has been a Drapers Junior Research Fellow at St Anne's College since 2014. 

No image

Thomas Woolley received his DPhil from Oxford in 2012 under the supervision of Ruth Baker, Eamonn Gaffney, and Philip Maini. He is a member of the Mathematical Biology Group and has been a St John’s College Junior Research Fellow in Mathematics since 2013.

No image

Fri, 04 Nov 2016

16:00 - 17:00
L1

North meets South Colloquium

Emilie Dufresne + Robert Van Gorder
(Mathematical Institute, Oxford)
Abstract

What is the minimal size of a separating set? -- Emilie Dufresne

[[{"fid":"23334","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Emilie Dufresne","field_file_image_title_text[und][0][value]":"Emilie Dufresne"},"type":"media","attributes":{"alt":"Emilie Dufresne","title":"Emilie Dufresne","height":"258","width":"258","class":"media-element file-media-square"}}]]

Abstract: The problem of classifying objects up to certain allowed transformations figures prominently in almost all branches of Mathematics, and Invariants are used to decide if two objects are equivalent. A separating set is a set of invariants which achieve the desired classification. In this talk we take the point of view of Invariant Theory, where the objects correspond to points on an affine variety (often a vector space) and equivalence is given by the action of an algebraic group on this affine variety. We explain how the geometry and combinatorics of the group action govern the minimal size of separating sets.

 

Predator-Prey-Subsidy Dynamics and the Paradox of Enrichment on Networks -- Robert Van Gorder

[[{"fid":"23335","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Robert Van Gorder","field_file_image_title_text[und][0][value]":"Robert Van Gorder"},"type":"media","attributes":{"alt":"Robert Van Gorder","title":"Robert Van Gorder","height":"258","width":"258","class":"media-element file-media-square"}}]]

Abstract: The phrase "paradox of enrichment" was coined by Rosenzweig (1971) to describe the observation that increasing the food available to prey participating in predator-prey interactions can destabilize the predator's population. Subsequent work demonstrated that food-web connectance on networks can stabilize the predator-prey dynamics, thereby dampening the paradox of enrichment in networked domains (such as those used in stepping-stone models). However, when a resource subsidy is available to predators which migrate between nodes on such a network (as is actually observed in some real systems), we may show that predator-prey systems can exhibit a paradox of enrichment - induced by the motion of predators between nodes - provided that such networks are sufficiently densely connected. 

Fri, 28 Oct 2016

16:00 - 17:00
L1

A short guide to research impact

Professor Mike Giles & Professor Ursula Martin
(Mathematical Institute, Oxford)
Abstract

Some relish the idea of working with users of research and having an impact on the outside world - some view it as a ridiculous government agenda which interferes with academic freedom.  We’ll give an overview of  the political and practical aspects of impact and identify things you might want to consider when deciding whether, and how, to get involved.

Fri, 21 Oct 2016

16:00 - 17:00
L1

Talking to your audience

Professor Jon Chapman
(Mathematical Institute, Oxford)
Abstract

How might you prepare talks for different audiences (specialised seminar, colloquium-style talk, talk to a non-mathematical audience, job interview)?  Join us for advice on this, and on how to connect with your audience and get them to feel involved.