Forthcoming events in this series


Fri, 21 Oct 2016

16:00 - 17:00
L1

Talking to your audience

Professor Jon Chapman
(Mathematical Institute, Oxford)
Abstract

How might you prepare talks for different audiences (specialised seminar, colloquium-style talk, talk to a non-mathematical audience, job interview)?  Join us for advice on this, and on how to connect with your audience and get them to feel involved.

Fri, 14 Oct 2016

16:00 - 17:00
L2

Engaging with the public

Abstract

There are many opportunities within Oxford to communicate your excitement about mathematics and your own research to a wider audience, whether adults or school students.  In this session we'll hear about some of those opportunities, and have some training on how to write a press release, so that you are well placed to share your next research paper with the public.

Featuring 
Rebecca Cotton-Barratt, Schools Liaison Officer and Admissions Coordinator in the Mathematical Institute
Mareli Grady, Schools Liaison Officer in the Statistics Department and Mathemagicians Coordinator in the Mathematical Institute
Stuart Gillespie, Media Relations Officer for the University of Oxford

Fri, 10 Jun 2016

16:00 - 17:00
L1

Owning a successful DPhil

Abstract
Wondering about how to organise your DPhil? How to make the most of your supervision meetings?

In this session we will explore these and other questions related to what makes a successful DPhil with help from faculty members, postdocs and DPhil students.

In the first half of the session Helen Byrne and Roger Heath-Brown will give short talks on their experiences as PhD students and supervisors. 

The second part of the session will be a panel discussion, and the panel will consist of Emily Cliff, Benjamin Green, Paul Taylor and Andrew Thompson. Senior faculty members will be kindly asked to leave the lecture theatre - to ensure that students feel comfortable with discussing their experiences with later year students and postdocs/research fellows without any senior faculty present.
 
At 5pm senior and junior faculty members, postdocs and students will reunite in the common room for the happy hour.

About the speakers and panel members:
Helen Byrne received her DPhil from Oxford under the supervision of John Norbury. She was a Professor of Applied Mathematics in Nottingham from 2003 to 2011, when she moved to Oxford where she is a Professor in Mathematical Biology.
Professor Helen Byrne
 
Roger Heath-Brown received his PhD from Cambridge under the supervision of Alan Baker. He moved to Oxford in 1979, where he has been a Professor of Pure Mathematics since 1999.
Roger Heath-Brown
 
Emily Cliff received her DPhil from Oxford in 2015 under the supervision of Kobi Kremnitzer, and she is now a postdoc in the Geometry and Representation Theory group.
No image
 
Benjamin Green and Paul Taylor are both fourth year DPhil students; Benjamin Green is a member of the Number Theory group,
No image
while Paul Taylor is in the Mathematical Biology group.
No image
 
Andrew Thompson received his PhD from the University of Edinburgh in 2012 under the supervision of Coralia Cartis and Jared Tanner, and he has been a Lecturer in Computational Mathematics at Oxford since 2014.
No image
 
Fri, 20 May 2016

16:00 - 17:00
L1

North meets South Colloquium

Sira Gratz + Hao Ni
(Mathematical Institute, Oxford)
Abstract

Cluster algebras: from finite to infinite -- Sira Gratz

No image

Abstract: Cluster algebras were introduced by Fomin and Zelevinsky at the beginning of this millennium.  Despite their relatively young age, strong connections to various fields of mathematics - pure and applied - have been established; they show up in topics as diverse as the representation theory of algebras, Teichmüller theory, Poisson geometry, string theory, and partial differential equations describing shallow water waves.  In this talk, following a short introduction to cluster algebras, we will explore their generalisation to infinite rank.

Modelling the effects of data streams using rough paths theory -- Hao Ni

Abstract: In this talk, we bring the theory of rough paths to the study of non-parametric statistics on streamed data and particularly to the problem of regression where the input variable is a stream of information, and the dependent response is also (potentially) a path or a stream.  We explain how a certain graded feature set of a stream, known in the rough path literature as the signature of the path, has a universality that allows one to characterise the functional relationship summarising the conditional distribution of the dependent response. At the same time this feature set allows explicit computational approaches through linear regression.  We give several examples to show how this low dimensional statistic can be effective to predict the effects of a data stream.

Fri, 13 May 2016

16:00 - 17:00
L1

Speaking and listening

Professor Philip Maini
(Mathematical Institute, Oxford)
Abstract

What is the point of giving a talk?  What is the point of going to a talk?  In this presentation, which is intended to have a lot of audience participation, I would like to explore how one should prepare talks for different audiences and different occasions, and what one should try to get out of going to a talk.

Fri, 06 May 2016

16:00 - 17:00
L1

North meets South Colloquium

Bruce Bartlett + Giacomo Canevari
(Mathematical Institute, Oxford)
Abstract

From the finite Fourier transform to topological quantum field theory -- Bruce Bartlett

No image

Abstract: In 1979, Auslander and Tolimieri wrote the influential "Is computing with the finite Fourier transform pure or applied mathematics?".  It was a homage to the indivisibility of our two subjects, by demonstrating the interwoven nature of the finite Fourier transform, Gauss sums, and the finite Heisenberg group.  My talk is intended as a new chapter in this story. I will explain how all these topics come together yet again in 3-dimensional topological quantum field theory, namely Chern-Simons theory with gauge group U(1).

Defects in liquid crystals: mathematical approaches -- Giacomo Canevari

No image

Abstract: Liquid crystals are matter in an intermediate state between liquids and crystalline solids.  They are composed by molecules which can flow, but retain some form of ordering.  For instance, in the so-called nematic phase the molecules tend to align along some locally preferred directions.  However, the ordering is not perfect, and defects are commonly observed.

The mathematical theory of defects in liquid crystals combines tools from different fields, ranging from topology - which provides a convenient language to describe the main properties of defects -to calculus of variations and partial differential equations.  I will compare a few mathematical approaches to defects in nematic liquid crystals, and discuss how they relate to each other via asymptotic analysis.

Fri, 29 Apr 2016

16:00 - 17:00
L1

InFoMM CDT Annual Lecture

Professor Chris Budd
(University of Bath)
Abstract

Some models for climate change, the good the bad and the ugly

Modelling climate presents huge challenges for mathematicians and scientists, and has a large effect on policy makers.  Climate models themselves vary from simple to complex with a huge range in between.  But how good and/or reliable are they?

In this talk I will describe some of the various mathematical models of climate that are both used to understand past climate and also to predict future climate.  I will also try to show that an understanding of non-smooth effects in dynamical systems can give us useful insights into the behaviour and analysis of these models.

Fri, 22 Apr 2016

16:00 - 17:00
L1

Journals and metrics

Professor Sir John Ball
(Mathematical Institute, Oxford)
Abstract

What is the purpose of journals?  How should you choose what journal to submit a paper to?  Should it be open access?  And how would you like your work to be evaluated?

Fri, 26 Feb 2016

16:00 - 17:00
L1

Self-awareness, assertiveness & productive relationships

Alison Trinder and Dave Hewett
Abstract

Who are you?  What motivates you?  What's important to you?  How do you react to challenges and adversities?  In this session we will explore the power of self-awareness (understanding our own characters, values and motivations) and introduce assertiveness skills in the context of building positive and productive relationships (with colleagues, collaborators, students and others).

Fri, 19 Feb 2016

16:00 - 17:00
L1

North meets South Colloquium

Patrick Farrell + Yufei Zhao
(University of Oxford)
Abstract

Computing distinct solutions of differential equations -- Patrick Farrell

Abstract: TBA

Triangles and equations -- Yufei Zhao

Abstract: I will explain how tools in graph theory can be useful for understanding certain problems in additive combinatorics, in particular the existence of arithmetic progressions in sets of integers. 

Fri, 22 Jan 2016

16:00 - 17:00
L1

Scientific writing

Prof. Nick Trefethen
(Mathematical Institute, Oxford)
Abstract

Writing is a part of any career in science or mathematics. I will make some remarks about the role writing has played in my life and the role it might play in yours.

Fri, 13 Nov 2015

16:00 - 17:00
L1

North meets South Colloquium

Jennifer Balakrishnan + François Lafond
(Mathematical Insitute, Oxford)
Abstract

Finding rational points on curves - Jennifer Balakrishnan (Mathematical Institute, Oxford)

From cryptography to the proof of Fermat's Last Theorem, elliptic curves are ubiquitous in modern number theory.  Much activity is focused on developing methods to discover their rational points (those points with rational coordinates).  It turns out that finding a rational point on an elliptic curve is very much like finding the proverbial needle in the haystack.  In fact, there is no algorithm known to determine the group of rational points on an elliptic curve.

Hyperelliptic curves are also of broad interest; when these curves are defined over the rational numbers, they are known to have finitely many rational points.  Nevertheless, the question remains: how do we find these rational points?

I'll summarize some of the interesting number theory behind these curves and briefly describe a technique for finding rational points on curves using (p-adic) numerical linear algebra.

____________________________

Analysis, prediction and control of technological progress - François Lafond (London Institute for Mathematical Sciences, Institute for New Economic Thinking at the Oxford Martin School, United Nations University - MERIT)

Technological evolution is one of the main drivers of social and economic change, with transformative effects on most aspects of human life.  How do technologies evolve?  How can we predict and influence technological progress?  To answer these questions, we looked at the historical records of the performance of multiple technologies.  We first evaluate simple predictions based on a generalised version of Moore's law, which assumes that technologies have a unit cost decreasing exponentially, but at a technology-specific rate.  We then look at a more explanatory theory which posits that experience - typically in the form of learning-by-doing - is the driver of technological progress.  These experience curves work relatively well in terms of forecasting, but in reality technological progress is a very complex process.  To clarify the role of different causal mechanisms, we also study military production during World War II, where it can be argued that demand and other factors were exogenous.  Finally, we analyse how to best allocate investment between competing technologies.  A decision maker faces a trade-off between specialisation and diversification which is influenced by technology characteristics, risk aversion, demand and the planning horizon.

Fri, 30 Oct 2015

16:00 - 17:00
L1

North meets South Colloquium

Pavel Safronov + Ian Griffiths
(Mathematical Institute, Oxford)
Abstract

Derived geometry and approximations - Pavel Safronov

Derived geometry has been developed to address issues arising in geometry from a consideration of spaces with intrinsic symmetry or some singular spaces arising as complicated intersections.  It has been successful both in pure mathematics and theoretical physics where derived geometric structures appear in quantum gauge field theories such as the theory of quantum electrodynamics.  Recently Lurie has developed a transparent approach to deformation theory, i.e. the theory of approximations of algebraic structures, using the language of derived algebraic geometry.  I will motivate the theory on a basic example and explain one of the theorems in the subject.

_______________________________

How magnets and mathematics can help solve the current water crisis - Ian Griffiths

Although water was once considered an almost unlimited resource, population growth, drought and contamination are straining our water supplies.  Up to 70% of deaths in Bangladesh are currently attributed to arsenic contamination, highlighting the essential need to develop new and effective ways of purifying water.

Since arsenic binds to iron oxide, magnets offer one such way of removing arsenic by simply pulling it from the water.  For larger contaminants, filters with a spatially varying porosity can remove particles through selective sieving mechanisms.

Here we develop mathematical models that describe each of these scenarios, show how the resulting models give insight into the design requirements for new purification methods, and present methods for implementing these ideas with industry.