Forthcoming events in this series


Thu, 25 Jan 2024
16:00
L3

Causal transport on path space

Rui Lim
(Mathematical Insitute, Oxford)
Further Information

Join us for refreshments from 330 outside L3.

Abstract

Causal optimal transport and the related adapted Wasserstein distance have recently been popularized as a more appropriate alternative to the classical Wasserstein distance in the context of stochastic analysis and mathematical finance. In this talk, we establish some interesting consequences of causality for transports on the space of continuous functions between the laws of stochastic differential equations.
 

We first characterize bicausal transport plans and maps between the laws of stochastic differential equations. As an application, we are able to provide necessary and sufficient conditions for bicausal transport plans to be induced by bi-causal maps. Analogous to the classical case, we show that bicausal Monge transports are dense in the set of bicausal couplings between laws of SDEs with unique strong solutions and regular coefficients.

 This is a joint work with Rama Cont.

Thu, 18 Jan 2024
16:00
L3

Multireference Alignment for Lead-Lag Detection in Multivariate Time Series and Equity Trading

Danni Shi
(Oxford Man Institute [OMI])
Further Information

Join us for refreshments from 330 outside L3.

Abstract

We introduce a methodology based on Multireference Alignment (MRA) for lead-lag detection in multivariate time series, and demonstrate its applicability in developing trading strategies. Specifically designed for low signal-to-noise ratio (SNR) scenarios, our approach estimates denoised latent signals from a set of time series. We also investigate the impact of clustering the time series on the recovery of latent signals. We demonstrate that our lead-lag detection module outperforms commonly employed cross-correlation-based methods. Furthermore, we devise a cross-sectional trading strategy that capitalizes on the lead-lag relationships uncovered by our approach and attains significant economic benefits. Promising backtesting results on daily equity returns illustrate the potential of our method in quantitative finance and suggest avenues for future research.

Thu, 07 Dec 2023
18:00
The Auditorium, Citigroup Centre, London, E14 5LB

Frontiers in Quantitative Finance: Large Language Models for Quantitative Finance

Dr Ioana Boier
Abstract

This event is free but requires prior registration. To register, please click here.

 

Abstract
In the contemporary AI landscape, Large Language Models (LLMs) stand out as game-changers. They redefine not only how we interact with computers via natural language but also how we identify and extract insights from vast, complex datasets. This presentation delves into the nuances of training and customizing LLMs, with a focus on their applications to quantitative finance.


About the speaker
Ioana Boier is a senior principal solutions architect at Nvidia. Her background is in Quantitative Finance and Computer Science. Prior to joining Nvidia, she was the Head of Quantitative Portfolio Solutions at Alphadyne Asset Management, and led research teams at Citadel LLC, BNP Paribas, and IBM T.J. Watson Research. She has a Ph.D. in Computer Science from Purdue University and is the author of over 30 peer-reviewed publications, 15 patents, and the winner of several awards for applied research delivered into products.
View her LinkedIn page

 

Frontiers in Quantitative Finance is brought to you by the Oxford Mathematical and Computational Finance Group and sponsored by CitiGroup and Mosaic SmartData.
 

Thu, 30 Nov 2023
16:00
Lecture Room 4, Mathematical Institute

Duality of causal distributionally robust optimization

Yifan Jiang
(Mathematical Institute (University of Oxford))
Abstract

In this talk, we investigate distributionally robust optimization (DRO) in a dynamic context. We consider a general penalized DRO problem with a causal transport-type penalization. Such a penalization naturally captures the information flow generated by the models. We derive a tractable dynamic duality formula under a measure theoretic framework. Furthermore, we apply the duality to distributionally robust average value-at-risk and stochastic control problems.

Thu, 23 Nov 2023
16:00
Lecture Room 4, Mathematical Institute

Mean-field Analysis of Generalization Errors

Dr Gholamali Aminian
(Alan Turing Institute)
Abstract

We propose a novel framework for exploring weak and $L_2$ generalization errors of algorithms through the lens of differential calculus on the space of probability measures. Specifically, we consider the KL-regularized empirical risk minimization problem and establish generic conditions under which the generalization error convergence rate, when training on a sample of size $n$ , is $\matcal{O}(1/n)$. In the context of supervised learning with a one-hidden layer neural network in the mean-field regime, these conditions are reflected in suitable integrability and regularity assumptions on the loss and activation functions.

Thu, 16 Nov 2023
16:00
Lecture Room 4, Mathematical Institute

Automated Market Makers Designs beyond Constant Functions

Dr Leandro Sanchez-Betancourt
(Mathematical Insitute, Oxford)
Abstract

Popular automated market makers (AMMs) use constant function markets (CFMs) to clear the demand and supply in the pool of liquidity. A key drawback in the implementation of CFMs is that liquidity providers (LPs) are currently providing liquidity at a loss, on average. In this paper, we propose two new designs for decentralised trading venues, the arithmetic liquidity pool (ALP) and the geometric liquidity pool (GLP). In both pools, LPs choose impact functions that determine how liquidity taking orders impact the marginal exchange rate of the pool, and set the price of liquidity in the form of quotes around the marginal rate. The impact functions and the quotes determine the dynamics of the marginal rate and the price of liquidity. We show that CFMs are a subset of ALP; specifically, given a trading function of a CFM, there are impact functions and  quotes in the ALP that replicate the marginal rate dynamics and the execution costs in the CFM. For the ALP and GLP, we propose an optimal liquidity provision strategy where the price of liquidity maximises the LP's expected profit and the strategy depends on the LP's (i) tolerance to inventory risk and (ii) views on the demand for liquidity. Our strategies admit closed-form solutions and are computationally efficient.  We show that the price of liquidity in CFMs is suboptimal in the ALP. Also, we give conditions on the impact functions and the liquidity provision strategy to prevent arbitrages from rountrip trades. Finally, we use transaction data from Binance and Uniswap v3 to show that liquidity provision is not a loss-leading activity in the ALP.

Thu, 09 Nov 2023
18:00
The Auditorium, Citigroup Centre, London, E14 5LB

Frontiers in Quantitative Finance: Tackling Nonlinear Price Impact with Linear Strategies

Dr Xavier Brokmann
(Qube Research & Technologies)
Abstract

This seminar is part of our Frontiers in Quantitative Finance. Attendance is free of charge but requires prior online registration.

Abstract
Empirical studies consistently find that the price impact of large trades approximately follows a nonlinear power law. Yet, tractable formulas for the portfolios that trade off predictive trading signals, risk, and trading costs in an optimal manner are only available for quadratic costs corresponding to linear price impact. In this paper, we show that the resulting linear strategies allow to achieve virtually optimal performance also for realistic nonlinear price impact, if the “effective” quadratic cost parameter is chosen appropriately. To wit, for a wide range of risk levels, this leads to performance losses below 2% compared to the numerical Viterbi algorithm of Kolm and Ritter (2014) run at very high accuracy. The effective quadratic cost depends on the portfolio risk, but can be computed without any sophisticated numerics by simply maximizing an explicit scalar function.
Read more on this work here.

 

Thu, 02 Nov 2023
16:00
Lecture Room 4, Mathematical Institute

An offline learning approach to propagator models

Dr Yufei Zhang
(Department of Mathematics, Imperial College London)
Abstract

We consider an offline learning problem for an agent who first estimates an unknown price impact kernel from a static dataset, and then designs strategies to liquidate a risky asset while creating transient price impact. We propose a novel approach for a nonparametric estimation of the propagator from a dataset containing correlated price trajectories, trading signals and metaorders. We quantify the accuracy of the estimated propagator using a metric which depends explicitly on the dataset. We show that a trader who tries to minimise her execution costs by using a greedy strategy purely based on the estimated propagator will encounter suboptimality due to spurious correlation between the trading strategy and the estimator. By adopting an offline reinforcement learning approach, we introduce a pessimistic loss functional taking the uncertainty of the estimated propagator into account, with an optimiser which eliminates the spurious correlation, and derive an asymptotically optimal bound on the execution costs even without precise information on the true propagator. Numerical experiments are included to demonstrate the effectiveness of the proposed propagator estimator and the pessimistic trading strategy.

Thu, 26 Oct 2023
16:00
Lecture Room 4, Mathematical Institute

A closed form model-free approximation for the Initial Margin of option portfolios

Arianna Mingone
(Ecole Polytechnique)
Abstract

Central clearing counterparty houses (CCPs) play a fundamental role in mitigating the counterparty risk for exchange traded options. CCPs cover for possible losses during the liquidation of a defaulting member's portfolio by collecting initial margins from their members. In this article we analyze the current state of the art in the industry for computing initial margins for options, whose core component is generally based on a VaR or Expected Shortfall risk measure. We derive an approximation formula for the VaR at short horizons in a model-free setting. This innovating formula has promising features and behaves in a much more satisfactory way than the classical Filtered Historical Simulation-based VaR in our numerical experiments. In addition, we consider the neural-SDE model for normalized call prices proposed by [Cohen et al., arXiv:2202.07148, 2022] and obtain a quasi-explicit formula for the VaR and a closed formula for the short term VaR in this model, due to its conditional affine structure.

Thu, 19 Oct 2023
16:00
Lecture Room 4, Mathematical Institute

Detecting Lead-Lag Relationships in Stock Returns and Portfolio Strategies

Qi Jin
Abstract

We propose a method to detect linear and nonlinear lead-lag relationships in stock returns.  Our approach uses pairwise Lévy-area and cross-correlation of returns to rank the assets from leaders to followers. We use the rankings to construct a portfolio that longs or shorts the followers based on the previous returns of the leaders, and the stocks are ranked every time the portfolio is rebalanced. The portfolio also takes an offsetting position on the SPY ETF so that the initial value of the portfolio is zero. Our data spans from 1963 to 2022 and we use an average of over 500 stocks to construct portfolios for each trading day. The annualized returns of our lead-lag portfolios are over  20%, and the returns outperform all lead-lag benchmarks in the literature. There is little overlap between the leaders and the followers we find and those that are reported in previous studies based on market capitalization, volume traded, and intra-industry relationships. Our findings support the slow information diffusion hypothesis; i.e., portfolios rebalanced once a day consistently outperform the bidiurnal, weekly, bi-weekly, tri-weekly, and monthly rebalanced portfolios.

Thu, 12 Oct 2023
16:00
Lecture Room 4, Mathematical Institute

Path Shadowing Monte-Carlo: a new approach to prediction

Rudy Morel
(Ecole Normale Superieure)
Abstract

A Path Shadowing Monte-Carlo method provides prediction of future paths given any generative model.

At a given date, it averages future quantities over generated price paths whose past history matches, or “shadows”, the actual (observed) history.

We test our approach using paths generated from a maximum entropy model of financial prices,

based on the recently introduced “Scattering Spectra” which are multi-scale analogues of the standard skewness and kurtosis.

This model promotes diversity of generated paths while reproducing the main statistical properties of financial prices, including stylized facts on volatility roughness.

Our method yields state-of-the-art predictions for future realized volatility. It also allows one to determine conditional option smiles for the S&P500.

These smiles depend only on the distribution of the price process, and are shown to outperform both the current version of the Path Dependent Volatility model and the option market itself.

Thu, 15 Jun 2023

16:00 - 17:00
L4

Graph Neural Networks for Forecasting Realized Volatility with Nonlinear Spillover Effects

Stacy Pu
Abstract

We propose a novel methodology for modeling and forecasting multivariate realized volatilities using graph neural networks. This approach extends the work of Zhang et al. [2022] (Graph-based methods for forecasting realized covariances) and explicitly incorporates the spillover effects from multi-hop neighbors and nonlinear relationships into the volatility forecasts. Our findings provide strong evidence that the information from multi-hop neighbors does not offer a clear advantage in terms of predictive accuracy. However, modeling the nonlinear spillover effects significantly enhances the forecasting accuracy of realized volatilities over up to one month. Our model is flexible and allows for training with different loss functions, and the results generally suggest that using Quasi-likelihood as the training loss can significantly improve the model performance, compared to the commonly-used mean squared error. A comprehensive series of evaluation tests and alternative model specifications confirm the robustness of our results.

Paper available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4375165

Thu, 18 May 2023

16:00 - 17:00
L6

Volatility Forecasting with Machine Learning and Intraday Commonality

Yihuang Zhang
Abstract

We apply machine learning models to forecast intraday realized volatility (RV), by exploiting commonality in intraday volatility via pooling stock data together, and by incorporating a proxy for the market volatility. Neural networks dominate linear regressions and tree-based models in terms of performance, due to their ability to uncover and model complex latent interactions among variables. Our findings remain robust when we apply trained models to new stocks that have not been included in the training set, thus providing new empirical evidence for a universal volatility mechanism among stocks. Finally, we propose a new approach to forecasting one-day-ahead RVs using past intraday RVs as predictors, and highlight interesting time-of-day effects that aid the forecasting mechanism. The results demonstrate that the proposed methodology yields superior out-of-sample forecasts over a strong set of traditional baselines that only rely on past daily RVs.

Thu, 11 May 2023

16:00 - 17:00
L6

Stability and approximation of nonlinear filters

Eliana Fausti
Abstract

Nonlinear filtering is a central mathematical tool in understanding how we process information. Unfortunately, the equations involved are often high dimensional, and therefore, in practical applications, approximate filters are often employed in place of the optimal filter. The error introduced by using these approximations is generally poorly understood. In this talk we will see how, in the case where the underlying process is a continuous-time, finite-state Markov Chain, results on the stability of filters can be strengthened to yield bounds for the error between the optimal filter and a general approximate filter.  We will then consider the 'projection filter', a low dimensional approximation of the filtering equation originally due to D. Brigo and collaborators, and show that its error is indeed well-controlled. The talk is based on joint work with Sam Cohen.

Thu, 04 May 2023

16:00 - 17:00
L6

Open Markets in Stochastic Portfolio Theory and Rank Jacobi Processes

David Itkin (Imperial College London)
Abstract

Stochastic portfolio theory is a framework to study large equity markets over long time horizons. In such settings investors are often confined to trading in an “open market” setup consisting of only assets with high capitalizations. In this work we relax previously studied notions of open markets and develop a tractable framework for them under mild structural conditions on the market.

Within this framework we also introduce a large parametric class of processes, which we call rank Jacobi processes. They produce a stable capital distribution curve consistent with empirical observations. Moreover, there are explicit expressions for the growth-optimal portfolio, and they are also shown to serve as worst-case models for a robust asymptotic growth problem under model ambiguity.

Time permitting, I will also present an extended class of models and illustrate calibration results to CRSP Equity Data.

This talk is based on joint work with Martin Larsson.

Thu, 09 Mar 2023

16:00 - 17:00
L6

A mathematical framework for modelling order book dynamics

Lifan Xuan
Abstract

This talk presents a general framework for modelling the dynamics of limit order books, built on the combination of two modelling ingredients: the order flow, modelled as a general spatial point process, and the market clearing, modelled via a deterministic ‘mass transport’ operator acting on distributions of buy and sell orders. At the mathematical level, this corresponds to a natural decomposition of the infinitesimal generator describing the  order book evolution into two operators: the generator of the order flow and the clearing operator. Our model provides a flexible framework for modelling and simulating order book dynamics and studying various scaling limits of discrete order book models. We show that our framework includes previous models as special cases and yields insights into the interplay between order flow and price dynamics. This talk is based on joint work with Rama Cont and Pierre Degond.

Thu, 16 Feb 2023

16:00 - 17:00
L6

Decentralised Finance: the Uniswap v3 ecosystem

Deborah Miori
Abstract

The Uniswap v3 ecosystem is built upon liquidity pools, where pairs of tokens are exchanged subject to a fee. We propose a systematic workflow to extract a meaningful but tractable sub-universe out of the current > 6,000 pools. We filter by imposing minimum levels on individual pool features, e.g. liquidity locked and agents’ activity, but also maximising the interconnection between the chosen pools to support broader dynamics. Then, we investigate liquidity consumption behaviour on the most relevant pools for Jan-June 2022. We propose to describe each liquidity taker by a transaction graph, which is a complete graph where nodes are transactions on pools and edges have weights from the time elapsed between pairs of transactions. Each graph is embedded into a vector by our own variant of the NLP rooted graph2vec algorithm. Thus, we are able to investigate the structural equivalence of liquidity takers behaviour and extract seven clusters with interpretable features. Finally, we introduce an ideal crypto law inspired from the ideal gas law of thermodynamics. Our model tests a relationship between variables that govern the mechanisms of each pool, i.e. liquidity provision, consumption, and price variation. If the law is satisfied, we say the pool has high cryptoness and demonstrate that it constitutes a better venue for the activity of market participants. Our metric could be employed by regulators and practitioners for developing pool health monitoring tools and establishing minimum levels of requirements.

Thu, 09 Feb 2023

16:00 - 17:00
L6

Short term predictability of returns in limit order markets: a Deep learning perspective

Lorenzo Lucchese
Abstract

We conduct a systematic large-scale analysis of order book-driven predictability in high-frequency returns by leveraging deep learning techniques. First, we introduce a new and robust representation of the order book, the volume representation. Next, we carry out an extensive empirical experiment to address various questions regarding predictability. We investigate if and how far ahead there is predictability, the importance of a robust data representation, the advantages of multi-horizon modeling, and the presence of universal trading patterns. We use model confidence sets, which provide a formalized statistical inference framework particularly well suited to answer these questions. Our findings show that at high frequencies predictability in mid-price returns is not just present, but ubiquitous. The performance of the deep learning models is strongly dependent on the choice of order book representation, and in this respect, the volume representation appears to have multiple practical advantages.

Thu, 02 Feb 2023

16:00 - 17:00
L6

Energy transition under scenario uncertainty: a mean-field game approach

Roxana Dumitrescu
Abstract

We study the impact of transition scenario uncertainty, and in particular, the uncertainty about future carbon price and electricity demand, on the pace of decarbonization of the electricity industry. To this end, we build a discrete time mean-field game model for the long-term dynamics of the electricity market subject to common random shocks affecting the carbon price and the electricity demand. These shocks depend on a macroeconomic scenario, which is not observed by the agents, but can be partially deduced from the frequency of the shocks. Due to this partial observation feature, the common noise is non-Markovian. We consider two classes of agents: conventional producers and renewable producers. The former choose an optimal moment to exit the market and the latter choose an optimal moment to enter the market by investing into renewable generation. The agents interact through the market price determined by a merit order mechanism with an exogenous stochastic demand. We prove the existence of Nash equilibria in the resulting mean-field game of optimal stopping with common noise, developing a novel linear programming approach for these problems. We illustrate our model by an example inspired by the UK electricity market, and show that scenario uncertainty leads to significant changes in the speed of replacement of conventional generators by renewable production.

Thu, 19 Jan 2023

16:00 - 17:00
L6

Model Calibration with Optimal Transport

Benjamin Joseph
Abstract

In order for one to infer reasonable predictions from a model, it must be calibrated to reproduce observations in the market. We use the semimartingale optimal transport methodology to formulate this calibration problem into a constrained optimisation problem, with our model calibrated using a finite number of European options observed in the market as constraints. Given such a PDE formulation, we are able to then derive a dual formulation involving an HJB equation which we can numerically solve. We focus on two cases: (1) The stochastic interest rate is known and perfectly matches the observed term structure in the market, however the asset local volatility and correlation are not known and must be calibrated; (2) The dynamics of both the stochastic interest rate and the underlying asset are unknown, and we must jointly calibrate both to European options on the interest rate and on the asset.

Thu, 01 Dec 2022

16:00 - 17:00
L3

Convergence of policy gradient methods for finite-horizon stochastic linear-quadratic control problems

Michael Giegrich
Abstract

We study the global linear convergence of policy gradient (PG) methods for finite-horizon exploratory linear-quadratic control (LQC) problems. The setting includes stochastic LQC problems with indefinite costs and allows additional entropy regularisers in the objective. We consider a continuous-time Gaussian policy whose mean is linear in the state variable and whose covariance is state-independent. Contrary to discrete-time problems, the cost is noncoercive in the policy and not all descent directions lead to bounded iterates. We propose geometry-aware gradient descents for the mean and covariance of the policy using the Fisher geometry and the Bures-Wasserstein geometry, respectively. The policy iterates are shown to obey an a-priori bound, and converge globally to the optimal policy with a linear rate. We further propose a novel PG method with discrete-time policies. The algorithm leverages the continuous-time analysis, and achieves a robust linear convergence across different action frequencies. A numerical experiment confirms the convergence and robustness of the proposed algorithm.

This is joint work with Yufei Zhang and Christoph Reisinger.

Thu, 24 Nov 2022

16:00 - 17:00
L3

Graph-based Methods for Forecasting Realized Covariances

Chao Zhang
Abstract

We forecast the realized covariance matrix of asset returns in the U.S. equity market by exploiting the predictive information of graphs in volatility and correlation. Specifically, we augment the Heterogeneous Autoregressive (HAR) model via neighborhood aggregation on these graphs. Our proposed method allows for the modeling of interdependence in volatility (also known as spillover effect) and correlation, while maintaining parsimony and interpretability. We explore various graph construction methods, including sector membership and graphical LASSO (for modeling volatility), and line graph (for modeling correlation). The results generally suggest that the augmented model incorporating graph information yields both statistically and economically significant improvements for out-of-sample performance over the traditional models. Such improvements remain significant over horizons up to one month ahead, but decay in time. The robustness tests demonstrate that the forecast improvements are obtained consistently over the different out-of-sample sub-periods, and are insensitive to measurement errors of volatilities.

Thu, 17 Nov 2022

16:00 - 17:00
L3

Simulating Arbitrage-Free Implied Volatility Surfaces

Milena Vuletic
Abstract

We present a computationally tractable method for simulating arbitrage free implied volatility surfaces. Our approach conciliates static arbitrage constraints with a realistic representation of statistical properties of implied volatility co-movements.
We illustrate our method with two examples. First, we propose a dynamic factor model for the implied volatility surface, and show how our method may be used to remove static arbitrage from model scenarios. As a second example, we propose a nonparametric generative model for implied volatility surfaces based on a Generative Adversarial Network (GAN).

Thu, 10 Nov 2022

16:00 - 17:00
L3

Sensitivity of robust optimization over an adapted Wasserstein ambiguity set

Yifan Jiang
Abstract

In this talk, we consider the sensitivity to the model uncertainty of an optimization problem. By introducing adapted Wasserstein perturbation, we extend the classical results in a static setting to the dynamic multi-period setting. Under mild conditions, we give an explicit formula for the first order approximation to the value function. An optimization problem with a cost of weak type will also be discussed.

Thu, 03 Nov 2022

16:00 - 17:00
L3

Decentralised Finance and Automated Market Making: Optimal Execution and Liquidity Provision

Fayçal Drissi
Abstract

Automated Market Makers (AMMs) are a new prototype of 
trading venues which are revolutionising the way market participants 
interact. At present, the majority of AMMs are Constant Function 
Market Makers (CFMMs) where a deterministic trading function 
determines how markets are cleared. A distinctive characteristic of 
CFMMs is that execution costs for liquidity takers, and revenue for 
liquidity providers, are given by closed-form functions of price, 
liquidity, and transaction size. This gives rise to a new class of 
trading problems. We focus on Constant Product Market Makers with 
Concentrated Liquidity and show how to optimally take and make 
liquidity. We use Uniswap v3 data to study price and liquidity 
dynamics and to motivate the models.

For liquidity taking, we describe how to optimally trade a large 
position in an asset and how to execute statistical arbitrages based 
on market signals. For liquidity provision, we show how the wealth 
decomposes into a fee and an asset component. Finally, we perform 
consecutive runs of in-sample estimation of model parameters and 
out-of-sample trading to showcase the performance of the strategies.