Forthcoming events in this series


Mon, 17 Feb 2020

14:15 - 15:15
L3

New Results on Continuously Expanding a Filtration

PHILIP PROTTER
(Columbia University)
Abstract

We "review" how one can expand a filtration by continuously adding a stochastic process. The new results (obtained with Léo Neufcourt) relate to the seimartingale decompositions after the expansion. We give some possible applications. 

Mon, 10 Feb 2020

15:45 - 16:45
L3

Market manipulation in order-driven markets

ALVARO CARTEA
(Mathematical Institute (University of Oxford))
Abstract

We model the trading strategy of an investor who spoofs the limit order book (LOB) to increase the revenue obtained from selling a position in a security. The strategy employs, in addition to sell limit orders (LOs) and sell market orders (MOs), a large number of spoof buy LOs to manipulate the volume imbalance of the LOB. Spoofing is illegal, so the strategy trades off the gains that originate from spoofing against the expected financial losses due to a fine imposed by the financial authorities. As the expected value of the fine increases, the investor relies less on spoofing, and if the expected fine is large enough, it is optimal for the investor not too spoof the LOB because the fine outweighs the benefits from spoofing. The arrival rate of buy MOs increases because other traders believe that the spoofed buy-heavy LOB shows the true supply of liquidity and interpret this imbalance as an upward pressure in prices. When the fine is low, our results show that spoofing considerably increases the revenues from liquidating a position. The profit of the spoof strategy is higher than that of a no-spoof strategy for two reasons. First, the investor employs fewer MOs to draw the inventory to zero and benefits from roundtrip trades, which stem from spoof buy LOs that are ‘inadvertently’ filled and subsequently unwound with sell LOs. Second, the midprice trends upward when the book is buy-heavy, therefore, as time evolves, the spoofer sells the asset at better prices (on average).

Mon, 10 Feb 2020

14:15 - 15:15
L3

The Aldous diffusion

MATTHIAS WINKEL
((Oxford University))
Abstract

The Aldous diffusion is a conjectured Markov process on the
space of real trees that is the continuum analogue of discrete Markov
chains on binary trees. We construct this conjectured process via a
consistent system of stationary evolutions of binary trees with k
labelled leaves and edges decorated with diffusions on a space of
interval partitions constructed in previous work by the same authors.
This pathwise construction allows us to study and compute path
properties of the Aldous diffusion including evolutions of projected
masses and distances between branch points. A key part of proving the
consistency of the projective system is Rogers and Pitman’s notion of
intertwining. This is joint work with Noah Forman, Soumik Pal and
Douglas Rizzolo.                            

Mon, 03 Feb 2020

15:45 - 16:45
L3

Rough semimartingales

PAVEL ZORIN-KRANICH
(Bonn University)
Abstract

 I will talk about optimal estimates for stochastic integrals
in the case when both rough paths and martingales play a role.

This is an ongoing joint work with Peter Friz (TU Berlin).

Mon, 03 Feb 2020

14:15 - 15:15
L3

Singular time changes, distributional valued Ricci bounds, and gradient estimates for reflected Brownian motion on non-convex domains

THEO STURM
(Bonn University)
Abstract

We derive generalized lower Ricci bounds in terms of signed measures. And we prove associated gradient estimates for the heat flow with Neumann boundary conditions on domains of metric measure spaces obtained through „convexification“ of the domains by means of subtle time changes. This improves upon previous results both in the case of non-convex domains and in the case of convex domains.
 

Mon, 27 Jan 2020

15:45 - 16:45
L3

A stochastic population model with rough selection

TOMMASO CONELIS ROSATI
(TU Berlin)
Abstract

"We consider a spatial Lambda-Fleming-Viot process, a model in mathematical biology, with a randomly chosen (rough) selection field. We study the scaling limit of this process in different regimes. This leads to the analysis of semi-discrete approximations of singular SPDEs, in particular the Parabolic Anderson Model and allows to extend previous results to weakly nonlinear cases. The subject presented is based on joint works with Aleksander Klimek and Nicolas Perkowski."

Mon, 27 Jan 2020

14:15 - 15:15
L3

A wetting model in the continuum

HENRI ELAD ALTMAN
((Imperial College, London))
Abstract

In this talk I will introduce a continuous wetting model consisting of the law of a Brownian meander tilted by its local time at a positive level h, with h small. I will prove that this measure converges, as h tends to 0, to the same weak limit as for discrete critical wetting models. I will also discuss the corresponding gradient dynamics, which is expected to converge to a Bessel SPDE admitting the law of a reflecting Brownian motion as invariant measure. This is based on joint work with Jean-Dominique Deuschel and Tal Orenshtein.

Mon, 20 Jan 2020

15:45 - 16:45
L3

Recent developments in random geometry

JEAN-FRANCOIS LE GALL
(Universite Paris-Sud)
Abstract

We discuss the models of random geometry that are derived
from scaling limits of large graphs embedded in the sphere and
chosen uniformly at random in a suitable class. The case of
quadrangulations with a boundary leads to the so-called
Brownian disk, which has been studied in a number of recent works.
We present a new construction of the Brownian
disk from excursion theory for Brownian motion indexed
by the Brownian tree. We also explain how the structure
of connected components of the Brownian disk above a
given height gives rise to a remarkable connection with
growth-fragmentation processes.

Mon, 20 Jan 2020

14:15 - 15:15
L3

A new family of one-dimensional martingale couplings

BENJAMIN JOURDAIN
(ENPC FRANCE)
Abstract

We exhibit a new martingale coupling between two probability measures $\mu$ and $\nu$ in convex order on the real line. This coupling is explicit in terms of the integrals of the positive and negative parts of the difference between the quantile functions of $\mu$ and $\nu$. The integral of $|y-x|$ with respect to this coupling is smaller than twice the Wasserstein distance with index one between $\mu$ and $\nu$. When the comonotonous coupling between $\mu$ and $\nu$ is given by a map $T$, it minimizes the integral of $|y-T(x)|$ among all martingales coupling.

(joint work with William Margheriti)

Mon, 09 Dec 2019

15:45 - 16:45
L3

Ito-Wentzell-Lions formula for measure dependent random fields under full and conditional measure flows

GONCALO DOS REIS
(University of Edinburgh)
Abstract


We present several Itô-Wentzell formulae on Wiener spaces for real-valued functionals random field of Itô type depending on measures. We distinguish the full- and marginal-measure flow cases. Derivatives with respect to the measure components are understood in the sense of Lions.
This talk is based on joint work with V. Platonov (U. of Edinburgh), see https://arxiv.org/abs/1910.01892.
 

Mon, 09 Dec 2019

14:15 - 15:45
L3

Low-dimensional quantum Yang-Mills measures

ILYA CHEVYREV
(University of Oxford)
Abstract

Yang-Mills theory plays an important role in the Standard Model and is behind many mathematical developments in geometric analysis. In this talk, I will present several recent results on the problem of constructing quantum Yang-Mills measures in 2 and 3 dimensions. I will particularly speak about a representation of the 2D measure as a random distributional connection and as the invariant measure of a Markov process arising from stochastic quantisation. I will also discuss the relationship with previous constructions of Driver, Sengupta, and Lévy based on random holonomies, and the difficulties in passing from 2 to 3 dimensions. Partly based on joint work with Ajay Chandra, Martin Hairer, and Hao Shen.

Mon, 02 Dec 2019

15:45 - 16:45
L3

Areas-of-areas on Hall trees generate the shuffle algebra

CRIS SALVI
(University of Oxford)
Abstract

We consider the coordinate-iterated-integral as an algebraic product on the shuffle algebra, called the (right) half-shuffle product. Its anti-symmetrization defines the biproduct  area(.,.), interpretable as the signed-area between two real-valued coordinate paths. We consider specific sets of binary, rooted trees known as Hall sets. These set have a complex combinatorial structure, which can be almost entirely circumvented by introducing the equivalent notion of Lazard sets. Using analytic results from dynamical systems and algebraic results from the theory of Lie algebras, we show that shuffle-polynomials in areas-of-areas on Hall trees generate the shuffle algebra.

Mon, 02 Dec 2019

14:15 - 15:15
L3

Asset Prices in Segmented and Integrated Markets

PAOLO GUASONI
(University of Dublin)
Abstract

This paper evaluates the effect of market integration on prices and welfare, in a model where two Lucas trees grow in separate regions with similar investors. We find equilibrium asset price dynamics and welfare both in segmentation, when each region holds its own asset and consumes its dividend, and in integration, when both regions trade both assets and consume both dividends. Integration always increases welfare. Asset prices may increase or decrease, depending on the time of integration, but decrease on average. Correlation in assets' returns is zero or negative before integration, but significantly positive afterwards, explaining some effects commonly associated with financialization.

Mon, 25 Nov 2019

15:45 - 16:45
L3

Stochastic impulse control: Recent Progress and Applications

CHRISTOPH BELAK
(TU Berlin University)
Abstract


Stochastic impulse control problems are continuous-time optimization problems in which a stochastic system is controlled through finitely many impulses causing a discontinuous displacement of the state process. The objective is to construct impulses which optimize a given performance functional of the state process. This type of optimization problem arises in many branches of applied probability and economics such as optimal portfolio management under transaction costs, optimal forest harvesting, inventory control, and valuation of real options.

In this talk, I will give an introduction to stochastic impulse control and discuss classical solution techniques. I will then introduce a new method to solve impulse control problems based on superharmonic functions and a stochastic analogue of Perron's method, which allows to construct optimal impulse controls under a very general set of assumptions. Finally, I will show how the general results can be applied to optimal investment problems in the presence of transaction costs.

This talk is based on joint work with Sören Christensen (Christian-Albrechts-University Kiel), Lukas Mich (Trier University), and Frank T. Seifried (Trier University).

References:
C. Belak, S. Christensen, F. T. Seifried: A General Verification Result for Stochastic Impulse Control Problems. SIAM Journal on Control and Optimization, Vol. 55, No. 2, pp. 627--649, 2017.
C. Belak, S. Christensen: Utility Maximisation in a Factor Model with Constant and Proportional Transaction Costs. Finance and Stochastics, Vol. 23, No. 1, pp. 29--96, 2019.
C. Belak, L. Mich, F. T. Seifried: Optimal Investment for Retail Investors with Floored and Capped Costs. Preprint, available at http://ssrn.com/abstract=3447346, 2019.

Mon, 25 Nov 2019

14:15 - 15:15
L3

N-player games and mean-field games with smooth dependence on past absorptions

LUCIANO CAMPI
(London School of Economics)
Abstract

Mean-field games with absorption is a class of games, that have been introduced in Campi and Fischer (2018) and that can be viewed as natural limits of symmetric stochastic differential games with a large number of players who, interacting through a mean-field, leave the game as soon as their private states hit some given boundary. In this talk, we push the study of such games further, extending their scope along two main directions. First, a direct dependence on past absorptions has been introduced in the drift of players' state dynamics. Second, the boundedness of coefficients and costs has been considerably relaxed including drift and costs with linear growth. Therefore, the mean-field interaction among the players takes place in two ways: via the empirical sub-probability measure of the surviving players and through a process representing the fraction of past absorptions over time. Moreover, relaxing the boundedness of the coefficients allows for more realistic dynamics for players' private states. We prove existence of solutions of the mean-field game in strict as well as relaxed feedback form. Finally, we show that such solutions induce approximate Nash equilibria for the N-player game with vanishing error in the mean-field limit as N goes to infinity. This is based on a joint work with Maddalena Ghio and Giulia Livieri (SNS Pisa). 

Mon, 18 Nov 2019

15:45 - 16:45
L3

From discrete to continuous time models Some surprising news on an old topic

WALTER SCHACHERMAYER
(University of Vienna)
Abstract

We reconsider the approximations of the Black-Scholes model by discrete time models such as the binominal or the trinominal model.

We show that for continuous and bounded claims one may approximate the replication in the Black-Scholes model by trading in the discrete time models. The approximations holds true in measure as well as "with bounded risk", the latter assertion being the delicate issue. The remarkable aspect is that this result does not apply to the well-known binominal model, but to a much wider class of discrete approximating models, including, eg.,the trinominal model. by an example we show that we cannot do the approximation with "vanishing risk".

We apply this result to portfolio optimization and show that, for utility functions with "reasonable asymptotic elasticity" the solution to the discrete time portfolio optimization converge to their continuous limit, again in a wide class of discretizations including the trinominal model. In the absence of "reasonable asymptotic elasticity", however, surprising pathologies may occur.

Joint work with David Kreps (Stanford University)

Mon, 18 Nov 2019

14:15 - 15:15
L3

Distributionally Robust Portfolio Selection with Optimal Transport Costs

JOSE BLANCHET
(Stanford Unversity)
Abstract

We revisit portfolio selection models by considering a distributionally robust version, where the region of distributional uncertainty is around the empirical measure and the discrepancy between probability measures is dictated by optimal transport costs. In many cases, this problem can be simplified into an empirical risk minimization problem with a regularization term. Moreover, we extend a recently developed inference methodology in order to select the size of the distributional uncertainty in a data-driven way. Our formulations allow us to inform the distributional uncertainty region using market information (e.g. via implied volatilities). We provide substantial empirical tests that validate our approach.
(This presentation is based on the following papers: https://arxiv.org/pdf/1802.04885.pdf and https://arxiv.org/abs/1810.024….)

Mon, 11 Nov 2019

15:45 - 16:45
L3

On a probabilistic interpretation of the parabolic-parabolic Keller Segel equations

MILICA TOMASEVIC
(Ecole Polytechnique Paris)
Abstract

The Keller Segel model for chemotaxis is a two-dimensional system of parabolic or elliptic PDEs.
Motivated by the study of the fully parabolic model using probabilistic methods, we give rise to a non linear SDE of McKean-Vlasov type with a highly non standard and singular interaction. Indeed, the drift of the equation involves all the past of one dimensional time marginal distributions of the process in a singular way. In terms of approximations by particle systems, an interesting and, to the best of our knowledge, new and challenging difficulty arises: at each time each particle interacts with all the past of the other ones by means of a highly singular space-time kernel.

In this talk, we will analyse the above probabilistic interpretation in $d=1$ and $d=2$.

Mon, 11 Nov 2019

14:15 - 15:15
L3

A decomposition of the Brownian excursion

ANTON WAKOLBINGER
(University of Frankfurt)
Abstract

We discuss a realizationwise correspondence between a Brownian  excursion (conditioned to reach height one) and a triple consisting of

(1) the local time profile of the excursion,

(2) an array of independent time-homogeneous Poisson processes on the real line, and

(3) a fair coin tossing sequence,  where (2) and (3) encode the ordering by height respectively the left-right ordering of the subexcursions.

The three components turn out to be independent,  with (1) giving a time change that is responsible for the time-homogeneity of the Poisson processes.

 By the Ray-Knight theorem, (1) is the excursion of a Feller branching diffusion;  thus the metric structure associated with (2), which generates the so-called lookdown space, can be seen as representing the genealogy underlying the Feller branching diffusion. 

Because of the independence of the three components, up to a time change the distribution of this genealogy does not change under a conditioning on the local time profile. This gives also a natural access to genealogies of continuum populations under competition,  whose population size is modeled e.g. by the Fellerbranching diffusion with a logistic drift.

The lecture is based on joint work with Stephan Gufler and Goetz Kersting.

 

Mon, 04 Nov 2019

15:45 - 16:45
L3

Scaling limits for planar aggregation with subcritical fluctuations

AMANDA TURNER
(University of Lancaster)
Abstract


Planar random growth processes occur widely in the physical world. Examples include diffusion-limited aggregation (DLA) for mineral deposition and the Eden model for biological cell growth. One approach to mathematically modelling such processes is to represent the randomly growing clusters as compositions of conformal mappings. In 1998, Hastings and Levitov proposed one such family of models, which includes versions of the physical processes described above. An intriguing property of their model is a conjectured phase transition between models that converge to growing disks, and 'turbulent' non-disk like models. In this talk I will describe a natural generalisation of the Hastings-Levitov family in which the location of each successive particle is distributed according to the density of harmonic measure on the cluster boundary, raised to some power. In recent joint work with Norris and Silvestri, we show that when this power lies within a particular range, the macroscopic shape of the cluster converges to a disk, but that as the power approaches the edge of this range the fluctuations approach a critical point, which is a limit of stability. This phase transition in fluctuations can be interpreted as the beginnings of a macroscopic phase transition from disks to non-disks analogous to that present in the Hastings-Levitov family.
 

Mon, 04 Nov 2019

14:15 - 15:15
L3

Real-time optimization under forward rank-dependent performance criteria: time-consistent investment under probability distortion.

THALEIA ZARIPHOPOULOU
(Austin Texas)
Abstract

I will introduce the concept of forward rank-dependent performance processes, extending the original notion to forward criteria that incorporate probability distortions and, at the same time, accommodate “real-time” incoming market information. A fundamental challenge is how to reconcile the time-consistent nature of forward performance criteria with the time-inconsistency stemming from probability distortions. For this, I will first propose two distinct definitions, one based on the preservation of performance value and the other on the time-consistency of policies and, in turn, establish their equivalence. I will then fully characterize the viable class of probability distortion processes, providing a bifurcation-type result. This will also characterize the candidate optimal wealth process, whose structure motivates the introduction of a new, distorted measure and a related dynamic market. I will, then, build a striking correspondence between the forward rank-dependent criteria in the original market and forward criteria without probability distortions in the auxiliary market. This connection provides a direct construction method for forward rank-dependent criteria with dynamic incoming information. Furthermore, a direct by-product of our work are new results on the so-called dynamic utilities and time-inconsistent problems in the classical (backward) setting. Indeed, it turns out that open questions in the latter setting can be directly addressed by framing the classical problem as a forward one under suitable information rescaling.

Mon, 28 Oct 2019

15:45 - 16:45
L3

Tail universality of Gaussian multiplicative chaos

MO DICK WONG
(University of Oxford)
Abstract

Abstract: Gaussian multiplicative chaos (GMC) has attracted a lot of attention in recent years due to its applications in many areas such as Liouville CFT and random matrix theory, but despite its importance not much has been known about its distributional properties. In this talk I shall explain the study of the tail probability of subcritical GMC and establish a precise formula for the leading order asymptotics, resolving a conjecture of Rhodes and Vargas.

Mon, 28 Oct 2019

14:15 - 15:15
L3

Signature Cumulants and Ordered Partitions

PATRIC BONNIER
(University of Oxford)
Abstract

The sequence of so-called Signature moments describes the laws of many stochastic processes in analogy with how the sequence of moments describes the laws of vector-valued random variables. However, even for vector-valued random variables, the sequence of cumulants is much better suited for many tasks than the sequence of moments. This motivates the study of so-called Signature cumulants. To do so, an elementary combinatorial approach is developed and used to show that in the same way that cumulants relate to the lattice of partitions, Signature cumulants relate to the lattice of so-called "ordered partitions". This is used to give a new characterisation of independence of multivariate stochastic processes.

Mon, 21 Oct 2019

15:45 - 16:45
L3

Fatou's Lemmas for Varying Probabilities and their Applications to Sequential Decision Making

EUGENE FEINBERG
(Stony Brook University)
Abstract

The classic Fatou lemma states that the lower limit of expectations is greater or equal than the expectation of the lower limit for a sequence of nonnegative random variables. This talk describes several generalizations of this fact including generalizations to converging sequences of probability measures. The three types of convergence of probability measures are considered in this talk: weak convergence, setwise convergence, and convergence in total variation. The talk also describes the Uniform Fatou Lemma (UFL) for sequences of probabilities converging in total variation. The UFL states the necessary and sufficient conditions for the validity of the stronger inequality than the inequality in Fatou's lemma. We shall also discuss applications of these results to sequential optimization problems with completely and partially observable state spaces. In particular, the UFL is useful for proving weak continuity of transition probabilities for posterior state distributions of stochastic sequences with incomplete state observations known under the name of Partially Observable Markov Decision Processes. These transition probabilities are implicitly defined by Bayes' formula, and general method for proving their continuity properties have not been available for long time. This talk is based on joint papers with Pavlo Kasyanov, Yan Liang, Michael Zgurovsky, and Nina Zadoianchuk.

Mon, 21 Oct 2019

14:15 - 15:15
L3

Variational Inference in Gaussian processes

JAMES HENSMAN
(Prowler.io)
Abstract

 Gaussian processes are well studied object in statistics and mathematics. In Machine Learning, we think of Gaussian processes as prior distributions over functions, which map from the index set to the realised path. To make Gaussian processes a practical tool for machine learning, we have developed tools around variational inference that allow for approximate computation in GPs leveraging the same hardware and software stacks that support deep learning. In this talk I'll give an overview of variational inference in GPs, show some successes of the method, and outline some exciting direction of potential future work.