Forthcoming events in this series
15:45
The homological projective dual of Sym^2(P^n)
Abstract
In recent years, some powerful tools for computing semi-orthogonal decompositions of derived categories of algebraic varieties have been developed: Kuznetsov's theory of homological projective duality and the closely related technique of VGIT for LG models. In this talk I will explain how the latter works and how it can be used to understand the derived categories of complete intersections in Sym^2(P^n). As a consequence, we obtain a new proof of result of Hosono and Takagi, which says that a certain pair of non-birational Calabi-Yau 3-folds are derived equivalent.
15:45
Complex Geometry and the Hele-Shaw flow
Abstract
The goal of this talk is to discuss a link between the Homogeneous Monge Ampere Equation in complex geometry, and a certain flow in the plane motivated by some fluid mechanics. After discussing and motivating the Dirichlet problem for this equation I will focus to what is probably the first non-trivial case that one can consider, and prove that it is possible to understand regularity of the solution in terms of what is known as the Hele-Shaw flow in the plane. As such we get, essentially explicit, examples of boundary data for which there is no regular solution, contrary to previous expectation. All of this is joint work with David Witt Nystrom.
14:00
The Donaldson-Thomas theory of K3xE and the Igusa cusp form
Abstract
Donaldson-Thomas invariants are fundamental deformation invariants of Calabi-Yau threefolds. We describe a recent conjecture of Oberdieck and Pandharipande which predicts that the (three variable) generating function for the Donaldson-Thomas invariants of K3xE is given by the reciprocal of the Igusa cusp form of weight 10. For each fixed K3 surface of genus g, the conjecture predicts that the corresponding (two variable) generating function is given by a particular meromorphic Jacobi form. We prove the conjecture for K3 surfaces of genus 0 and genus 1. Our computation uses a new technique which mixes motivic and toric methods.
14:00
The topology of rationally and polynomially convex domains
Abstract
Rationally and polynomially convex domains in ${\mathbb C}^n$ are fundamental objects of study in the theory of functions of several complex variables. After defining and illustrating these notions, I will explain joint work with Y.Eliashberg giving a complete characterization of the possible topologies of such domains in complex dimension at least three. The proofs are based on recent progress in symplectic topology, most notably the h-principles for loose Legendrian knots and Lagrangian caps.
15:45
Cobordisms between tangles
Abstract
In a previous work, we introduced a refinement of Juhasz’s sutured Floer homology, and constructed a minus theory for sutured manifolds, called sutured Floer chain complex. In this talk, we introduce a new description of sutured manifolds as “tangles” and describe a notion of cobordism between them. Using this construction, we define a cobordism map between the corresponding sutured Floer chain complexes. We also discuss some possible applications. This is a joint work with Eaman Eftekhary.
Infinitely many monotone Lagrangian Tori in CP^2
Abstract
15:45
Hamiltonian and quasi-Hamiltonian reduction via derived symplectic geometry
Abstract
I will explain an approach to Hamiltonian reduction using derived
symplectic geometry. Roughly speaking, the reduced space can be
presented as an intersection of two Lagrangians in a shifted symplectic
space, which therefore carries a natural symplectic structure. A slight
modification of the construction gives rise to quasi-Hamiltonian
reduction. This talk will also serve as an introduction to the wonderful
world of derived symplectic geometry where statements that morally ought
to be true are indeed true.
15:45
Exotic spheres and the topology of the symplectomorphism group
Abstract
Using the fact that certain exotic spheres do not admit Lagrangian embeddings into $T^*{\mathcal S}^{n+1}$, as proven by Abouzaid and Ekholm-Smith, we produce non-trivial homotopy classes of the group of compactly supported symplectomorphisms of $T^*{\mathcal S}^n$. In particular, we show that the Hamiltonian isotopy class of the symplectic Dehn twist depends on the parametrisation used in the construction. Related results are also obtained for $T^*({\mathcal S}^n \times {\mathcal S}^1)$.
Joint work with Jonny Evans.
Torus action and Segre classes in the context of the Green-Griffiths conjecture
Abstract
The goal of this second talk is to study the existence of global jet differentials. Thanks to the algebraic Morse inequalities, the problem reduces to the computation of a certain Chern number on the Demailly tower of projectivized jet bundles. We will describe the significant simplification due to Berczi consisting in integrating along the fibers of this tower by mean of an iterated residue formula. Beside the original argument coming from equivariant geometry, we will explain our alternative proof of such a formula and we will particularly be interested in the interplay between the two approaches.
Jet techniques for hyperbolicity problems
Abstract
Hyperbolicity is the study of the geometry of holomorphic entire curves $f:\mathbb{C}\to X$, with values in a given complex manifold $X$. In this introductary first talk, we will give some definitions and provide historical examples motivating the study of the hyperbolicity of complements $\mathbb{P}^{n}\setminus X_{d}$ of projective hypersurfaces $X_{d}$ having sufficiently high degree $d\gg n$.
Then, we will introduce the formalism of jets, that can be viewed as a coordinate free description of the differential equations that entire curves may satisfy, and explain a successful general strategy due to Bloch, Demailly, Siu, that relies in an essential way on the relation between entire curves and jet differentials vanishing on an ample divisor.
Recent directions in derived geometry
Abstract
We will give an idea of derived algebraic geometry and sketch a number of more or less recent directions, including derived symplectic geometry, derived Poisson structures, quantizations of moduli spaces, derived analytic geometry, derived logarithmic geometry and derived quadratic structures.
The geometry of auctions and competitive equilibrium with indivisible goods
Abstract
Auctioneers may wish to sell related but different indivisible goods in
a single process. To develop such techniques, we study the geometry of
how an agent's demanded bundle changes as prices change. This object
is the convex-geometric object known as a `tropical hypersurface'.
Moreover, simple geometric properties translate directly to economic
properties, providing a new taxonomy for economic valuations. When
considering multiple agents, we study the unions and intersections of
the corresponding tropical hypersurfaces; in particular, properties of
the intersection are deeply related to whether competitive equilibrium
exists or fails. This leads us to new results and generalisations of
existing results on equilibrium existence. The talk will provide an
introductory tour to relevant economics to show the context of these
applications of tropical geometry. This is joint work with Paul
Klemperer.
Morse theory in representation theory and algebraic geometry
Abstract
Hamiltonian reduction arose as a mechanism for reducing complexity of systems in mechanics, but it also provides a tool for constructing complicated but interesting objects from simpler ones. I will illustrate how this works in representation theory and algebraic geometry via examples. I will describe a new structure theory, motivated by Hamiltonian reduction (and in particular the Morse theory that results), for some categories (of D-modules) of interest to representation theorists. I will then explain how this implies a modified form of "hyperkahler Kirwan surjectivity" for the cohomology of certain Hamiltonian reductions. The talk will not assume that members of the audience know the meaning of any of the above-mentioned terms. The talk is based on joint work with K. McGerty.
On the Gromov width of polygon spaces
Abstract
After Gromov's foundational work in 1985, problems of symplectic embeddings lie in the heart of symplectic geometry. The Gromov width of a symplectic manifold
$(M, \omega)$ is a symplectic invariant that measures, roughly speaking, the size of the biggest ball we can symplectically embed in it. I will discuss tecniques to compute the Gromov width of a special family of symplectic manifolds, the moduli spaces of polygons in real $3$-space. Under some genericity assumptions on the edge lengths, the polygon space is a symplectic manifold; in fact, it is a symplectic reduction of Grassmannian of 2-planes in complex $n$-space. After introducing this family of manifolds we will concentrate on the spaces of 5-gons and calculate for their Gromov width. This is joint work with Milena Pabiniak, IST Lisbon.
Mirror symmetry without localisation
Abstract
Mirror Symmetry predicts a surprising relationship between the virtual numbers of degree-d rational curves in a target space X and variations of Hodge structure on a different space X’, called the mirror to X. Concretely, it predicts that one can compute genus-zero Gromov–Witten invariants (which are the virtual numbers of rational curves) in terms of hypergeometric functions (which are the solutions to a differential equation that controls the variation of Hodge structure). Existing proofs of this rely on beautiful but fearsomely complicated localization calculations in equivariant cohomology. I will describe a new proof of the Mirror Theorem, for a broad range of target spaces X, which is much simpler and more conceptual. This is joint work with Cristina Manolache.
The Crepant Transformation Conjecture and Fourier--Mukai Transforms
Abstract
Comparing curve-counting invariants
Abstract
Counting curves with given topological properties in a variety is a very old question. Example questions are: How many conics pass through five points in a plane, how many lines are there on a Calabi-Yau 3-fold? There are by now several ways to count curves and the numbers coming from different curve counting theories may be different. We would then like to have methods to compare these numbers. I will present such a general method and show how it works in the case of stable maps and stable quasi-maps.
Freeness of critical cohomological Hall algebras, Kac polynomials and character varieties II
Abstract
I will discuss some very well studied cohomology groups that turn out to be captured by the machinery of critical CoHAs, for example the compactly supported cohomology of singular quiver varieties and untwisted character varieties. I will explain the usefulness of this extra CoHA structure on these groups, starting with a new proof of the Kac conjecture, and discuss a conjectural form for the CoHA associated to untwisted character varieties that provides a new way to think about the conjectures of Hausel and Rodriguez-Villegas. Finally I will discuss an approach to purity for the compactly supported cohomology of quiver varieties and a related approach to a conjecture of Shiffmann and Vasserot, analogous to Kirwan surjectivity for the stack of commuting matrices.
Freeness of critical cohomological Hall algebras, Kac polynomials and character varieties I
Abstract
The cohomological Hall algebra of vanishing cycles associated to a quiver with potential is a categorification of the refined DT invariants associated to the same data, and also a very powerful tool for calculating them and proving positivity and integrality conjectures. This becomes especially true if the quiver with potential is "self dual" in a sense to be defined in the talk. After defining and giving a general introduction to the relevant background, I will discuss the main theorem regarding such CoHAs: they are free supercommutative.
Factorization homology is a fully extended TFT
Abstract
We will start with a recollection on factorization algebras and factorization homology. We will then explain what fully extended TFTs are, after Jacob Lurie. And finally we will see how factorization homology can be turned into a fully extended TFT. This is a joint work with my student Claudia Scheimbauer.
Lagrangian structures on derived mapping stacks
Abstract
We will explain how the result of Pantev-Toën-Vaquié-Vezzosi, about shifted symplectic structures on mapping stacks, can be extended to relative mapping stacks and Lagrangian structures. We will also provide applications in ordinary symplectic geometry and topological field theories.
Buildings, Spectral Networks, and the Asymptotics of Monodromy
Abstract
The talk will focus on how the asymptotic behavior of the Riemann-Hilbert correspondence (and, conjecturally, the non-abelian Hodge correspondence) on a Riemann surface is controlled by certain harmonic maps from the Riemann surface to affine buildings. This is part of joint work with Katzarkov, Noll and Simpson, which revisits, from the perspective afforded by the theory of harmonic maps to buildings, the work of Gaiotto, Moore and Neitzke on spectral networks, WKB problems, BPS states and wall-crossing.
(n+ε)-dimensional TQFTs and a higher dimensional Deligne conjecture
Abstract
The classical Deligne conjecture (now a theorem with several published proofs) says that chains on the little disks operad act on Hochschild cohomology. I'll describe a higher dimensional generalization of this result. In fact, even in the dimension of the original Deligne conjecture the generalization has something new to say: Hochschild chains and Hochschild cochains are the first two members of an infinite family of chain complexes associated to an arbitrary associative algebra, and there is a colored, higher genus operad which acts on these chain complexes. The Connes differential and Gerstenhaber bracket are two of the simplest generators of the homology of this operad, and I'll show that there exist additional, independent generators. These new generators are close cousins of Connes and Gerstenhaber which, so far as I can tell, have not been described in the literature.
Mixed Tate motivic graphs I
Abstract
In 1992 (or thereabouts) Bloch and Kriz gave the first explicit definition of the category of mixed Tate motives (MTM). Their definition relies heavily on the theory of algebraic cycles. Unfortunately, traditional methods of representing algebraic cycles (such as in terms of formal linear combinations of systems of polynomial equations) are notoriously difficult to work with, so progress in capitalizing on this description of the category to illuminate outstanding conjectures in the field has been slow. More recently, Gangl, Goncharov, and Levin suggested a simpler way to understand this category (and by extension, algebraic cycles more generally) by relating specific algebraic cycles to rooted, decorated, planar trees. In our talks, describing work in progress, we generalize this correspondence and attempt to systematize the connection between algebraic cycles and graphs. We will construct a Lie coalgebra L from a certain algebra of admissible graphs, discuss various properties that it satisfies (such as a well defined and simply described realization functor to the category of mixed Hodge structures), and relate the category of co-representations of L to the category MTM. One promising consequence of our investigations is the appearance of alternative bases of rational motives that have not previously appeared in the literature, suggesting a richer rational structure than had been previously suspected. In addition, our results give the first bounds on the complexity of computing admissibility of algebraic cycles, a previously unexplored topic.
Running the MMP via homological methods (COW SEMINAR)
Abstract
I will explain how, given a crepant morphism with one-dimensional fibres between 3-folds, it is possible to use noncommutative deformations to run the MMP in a satisfyingly algorithmic fashion. As part of this, a flop is viewed homologically as the solution to a universal property, and so is constructed not by changing GIT, but instead by changing the algebra. Carrying this extra information of the new algebra allows us to continue to flop, and thus continue the MMP, without having to calculate everything from scratch. Proving things in this manner does in fact have other consequences too, and I will explain some them, both theoretical and computational.
Crossed simplicial groups and invariants of structured surfaces
Abstract
Crossed simplicial groups were introduced independently by Krasauskas and Fiedorowicz-Loday as analogues of Connes' cyclic category. In this talk, I will explain a new perspective on a certain class of crossed simplicial groups, relating them to structured surfaces. This provides a combinatorial approach to categorical invariants of surfaces which leads to known, expected, and new examples. (Based on joint work with Mikhail Kapranov.)
Grassmannian cluster categories and dimers on a disc (COW SEMINAR)
Symplectic cohomology and circle-actions
Abstract
I will explain how to compute the symplectic cohomology of a manifold $M$ conical at infinity, whose Reeb flow at infinity arises from a Hamiltonian circle-action on $M$. For example, this allows one to compute the symplectic cohomology of negative line bundles in terms of the quantum cohomology, and (in joint work with Ivan Smith) via the open-closed string map one can determine the wrapped Fukaya category of negative line bundles over projective space. In this talk, I will show that one can explicitly compute the quantum cohomology and symplectic cohomology of Fano toric negative line bundles, which are in fact different cohomology groups, and surprisingly it is actually the symplectic cohomology which recovers the Jacobian ring of the Landau-Ginzburg superpotential.
Uniqueness Theorems for Smoothing Special Lagrangians
Abstract
Special Lagranigian submanifolds are area-minimizing Lagrangian submanifolds of Calabi--Yau manifolds. One can define the moduli space of compact special Lagrangian submanifolds of a (fixed) Calabi--Yau manifold. Mclean proves it has a structure of manifold (of dimension finite). It isn't compact in general, but one can compactify it by using geometric measure theory.
Kontsevich conjectured a mirror symmetry, and special Lagrangians should be "mirror" to holomorphic vector bundles. By using algebraic geometry one can compactify the moduli space of holomorphic vector bundles. By "counting" holomorphic vector bundles in Calabi--Yau 3-folds Richard Thomas defined holomorphic Casson invariants (Donaldson-Thomas invariants).
So far as I know it's an open question (probably very difficult) whether one can "count" special Lagrangians, or define a nice structure on the (compactified) moduli space of special Lagrangians.
To do it one has to study singularities of special Lagrangians.
One can smooth singularities in suitable situations: given a singular special Lagrangian, one can construct smooth special Lagrangians tending to it (by the gluing technique). I've proved a uniqueness theorem in a "symmetric" situation: given a symmetric singularity, there's only one way to smooth it (the point of the proof is that the symmetry reduces the problem to an ordinary differential equation).
More recently I've studied a non-symmetric situation together with Dominic Joyce and Joana Oliveira dos Santos Amorim. Our method is based on Lagrangian Floer theory, and is effective at least for pairs of two (special) Lagrangian planes intersecting transversely.
I'll give the details in the talk.
Stability conditions and Hitchin systems I
Abstract
The instanton corrections to the hyperkähler metric on moduli spaces of meromorphic flat SL(2,C)-connections on a Riemann surface with prescribed singularities have recently been studied by Gaiotto, Moore and Neitzke. The instantons are given by certain special trajectories of the meromorphic quadratic differentials which form the base of Hitchin's integrable system structure on the moduli space. Bridgeland and Smith interpret such quadratic differentials as defining stability conditions on an associated 3-Calabi-Yau triangulated category whose stable objects correspond to these special trajectories.
The smallest non-trivial examples are provided by the moduli spaces of quaternionic dimension one. In these cases it is possible to study explicitly the periods of the Seiberg-Witten differential on the fibres of the Hitchin system which define the central charge of the stability condition and lift the period map to the space of stability conditions. This provides in particular a new categorical perspective on the original Seiberg-Witten gauge theories.
Quantum cluster positivity and cohomological Donaldson-Thomas theory
Abstract
I will start by introducing Somos sequences, defined by innocent-looking quadratic recursions which, surprisingly, always return integer values. I will then explain how they can be viewed in a much larger context, that of the Laurent phenomenon in the theory of cluster algebras. Some further steps take us to the the quantum cluster positivity conjecture of Berenstein and Zelevinski. I will finally explain how, following Nagao and Efimov, cohomological Donaldson-Thomas theory leads to a proof of this conjecture in some, perhaps all, cases. This is joint work with Davison, Maulik, Schuermann.
Contact property of symplectic magnetic flows on the two-sphere.
Abstract
In this talk we aim to study periodic orbits on the energy levels of a symplectic magnetic flow on the two-sphere using methods from contact geometry. In particular we show that, if the energy is low enough, we either have two or infinitely many closed orbits. The second alternative holds if there exists a prime contractible periodic orbit. Finally we present some generalisations and work in progress for closed orientable surfaces of higher genus.
RFH=FH
Abstract
Rabinowitz Floer homology (RFH) is the Floer theory associated to the Rabinowitz action functional. One can think of this functional as a Lagrange multiplier functional of the unperturbed action functional of classical mechanics. Its critical points are closed orbits of arbitrary period but with fixed energy.
This fixed energy problem can be transformed into a fixed period problem on an enlarged phase space. This provides a way to see RFH as a "standard" Hamiltonian Floer theory, and allows one to treat RFH on an equal footing to other related Floer theories. In this talk we explain how this is done and discuss several applications.
Joint work with Alberto Abbondandolo and Alexandru Oancea.
Orderability and the Weinstein Conjecture
Abstract
In 2000 Eliashberg-Polterovich introduced the natural notion of orderability of contact manifolds; that is, the existence of a natural partial order on the group of contactomorphisms. I will explain how one can study orderability questions using the machinery of Rabinowitz Floer homology. We establish a link between orderable and hypertight contact manifolds, and show that the Weinstein Conjecture holds (i.e. there exists a closed Reeb orbit) whenever there exists a positive (not necessarily contractible) loop of contactomorphisms.
Joint work with Peter Albers and Urs Fuchs.
Delooping and reciprocity
Abstract
The Contou-Carrère symbol has been introduced in the 90's in the study of local analogues of autoduality of Jacobians of smooth projective curves. It is closely related to the tame symbol, the residue pairing, and the canonical central extension of loop groups. In this talk we will a discuss a K-theoretic interpretation of the Contou-Carrère symbol, which allows us to generalize this one-dimensional picture to higher dimensions. This will be achieved by studying the K-theory of Tate objects, giving rise to natural central extensions of higher loop groups by spectra. Using the K-theoretic viewpoint, we then go on to prove a reciprocity law for higher-dimensional Contou-Carrère symbols. This is joint work with O. Braunling and J. Wolfson.
Quasimaps, wall-crossings, and Mirror Symmetry II
Abstract
Quasimaps provide compactifications, depending on a stability parameter epsilon, for moduli spaces of maps from nonsingular algebraic curves to a large class of GIT quotients. These compactifications enjoy good properties and in particular they carry virtual fundamental classes. As the parameter epsilon varies, the resulting invariants are related by wall-crossing formulas. I will present some of these formulas in genus zero, and will explain why they can be viewed as generalizations (in several directions) of Givental's toric mirror theorems. I will also describe extensions of wall-crossing to higher genus, and (time permitting) to orbifold GIT targets as well.
The talk is based on joint works with Bumsig Kim, and partly also with Daewoong Cheong and with Davesh Maulik.
Quasimaps, wall-crossings, and Mirror Symmetry I
Abstract
Quasimaps provide compactifications, depending on a stability parameter epsilon, for moduli spaces of maps from nonsingular algebraic curves to a large class of GIT quotients. These compactifications enjoy good properties and in particular they carry virtual fundamental classes. As the parameter epsilon varies, the resulting invariants are related by wall-crossing formulas. I will present some of these formulas in genus zero, and will explain why they can be viewed as generalizations (in several directions) of Givental's toric mirror theorems. I will also describe extensions of wall-crossing to higher genus, and (time permitting) to orbifold GIT targets as well.
The talk is based on joint works with Bumsig Kim, and partly also with Daewoong Cheong and with Davesh Maulik.