Forthcoming events in this series


Tue, 17 Jun 2014

14:00 - 15:00
L4

Jet techniques for hyperbolicity problems

Lionel Darondeau
(Universite Paris-Sud)
Abstract

Hyperbolicity is the study of the geometry of holomorphic entire curves $f:\mathbb{C}\to X$, with values in a given complex manifold $X$. In this introductary first talk, we will give some definitions and provide historical examples motivating the study of the hyperbolicity of complements $\mathbb{P}^{n}\setminus X_{d}$ of projective hypersurfaces $X_{d}$ having sufficiently high degree $d\gg n$.

Then, we will introduce the formalism of jets, that can be viewed as a coordinate free description of the differential equations that entire curves may satisfy, and explain a successful general strategy due to Bloch, Demailly, Siu, that relies in an essential way on the relation between entire curves and jet differentials vanishing on an ample divisor.

Tue, 03 Jun 2014

15:45 - 16:45
L4

Recent directions in derived geometry

Gabriele Vezzosi
(Paris)
Abstract

We will give an idea of derived algebraic geometry and sketch a number of more or less recent directions, including derived symplectic geometry, derived Poisson structures, quantizations of moduli spaces, derived analytic geometry, derived logarithmic geometry and derived quadratic structures.

Tue, 27 May 2014

15:45 - 16:45
L4

The geometry of auctions and competitive equilibrium with indivisible goods

Elizabeth Baldwin
(Oxford)
Abstract

Auctioneers may wish to sell related but different indivisible goods in

a single process. To develop such techniques, we study the geometry of

how an agent's demanded bundle changes as prices change. This object

is the convex-geometric object known as a `tropical hypersurface'.

Moreover, simple geometric properties translate directly to economic

properties, providing a new taxonomy for economic valuations. When

considering multiple agents, we study the unions and intersections of

the corresponding tropical hypersurfaces; in particular, properties of

the intersection are deeply related to whether competitive equilibrium

exists or fails. This leads us to new results and generalisations of

existing results on equilibrium existence. The talk will provide an

introductory tour to relevant economics to show the context of these

applications of tropical geometry. This is joint work with Paul

Klemperer.

Tue, 27 May 2014

14:00 - 15:00
L4

Morse theory in representation theory and algebraic geometry

Thomas Nevins
(University of Illinois at Urbana Champaign)
Abstract

Hamiltonian reduction arose as a mechanism for reducing complexity of systems in mechanics, but it also provides a tool for constructing complicated but interesting objects from simpler ones. I will illustrate how this works in representation theory and algebraic geometry via examples. I will describe a new structure theory, motivated by Hamiltonian reduction (and in particular the Morse theory that results), for some categories (of D-modules) of interest to representation theorists. I will then explain how this implies a modified form of "hyperkahler Kirwan surjectivity" for the cohomology of certain Hamiltonian reductions. The talk will not assume that members of the audience know the meaning of any of the above-mentioned terms. The talk is based on joint work with K. McGerty.

Tue, 20 May 2014

14:00 - 15:00
L4

On the Gromov width of polygon spaces

Alessia Mandini
(Lisbon / Pavia)
Abstract

After Gromov's foundational work in 1985, problems of symplectic embeddings lie in the heart of symplectic geometry. The Gromov width of a symplectic manifold

$(M, \omega)$ is a symplectic invariant that measures, roughly speaking, the size of the biggest ball we can symplectically embed in it. I will discuss tecniques to compute the Gromov width of a special family of symplectic manifolds, the moduli spaces of polygons in real $3$-space. Under some genericity assumptions on the edge lengths, the polygon space is a symplectic manifold; in fact, it is a symplectic reduction of Grassmannian of 2-planes in complex $n$-space. After introducing this family of manifolds we will concentrate on the spaces of 5-gons and calculate for their Gromov width. This is joint work with Milena Pabiniak, IST Lisbon.

Tue, 13 May 2014

15:30 - 16:30
L4

Mirror symmetry without localisation

Tom Coates
(Imperial College London)
Abstract

Mirror Symmetry predicts a surprising relationship between the virtual numbers of degree-d rational curves in a target space X and variations of Hodge structure on a different space X’, called the mirror to X.  Concretely, it predicts that one can compute genus-zero Gromov–Witten invariants (which are the virtual numbers of rational curves) in terms of hypergeometric functions (which are the solutions to a differential equation that controls the variation of Hodge structure).  Existing proofs of this rely on beautiful but fearsomely complicated localization calculations in equivariant cohomology.  I will describe a new proof of the Mirror Theorem, for a broad range of target spaces X, which is much simpler and more conceptual. This is joint work with Cristina Manolache.

Tue, 13 May 2014

14:00 - 15:00
L4

The Crepant Transformation Conjecture and Fourier--Mukai Transforms

Tom Coates
(Imperial College London)
Abstract

Suppose that X and Y are Kahler manifolds or orbifolds which are related by a crepant resolution or flop F.  It is expected that the Gromov--Witten potentials of X and Y should be related by analytic continuation in Kahler parameters combined with a linear symplectomorphism between Givental's symplectic spaces for X and Y.  This linear symplectomorphism is expected to coincide, in a precise sense which I will explain, with the Fourier--Mukai transform on K-theory induced by F.  In this talk I will prove these conjectures, as well as their torus-equivariant generalizations, in the case where X and Y are toric.  
This is joint work with Hiroshi Iritani and Yunfeng Jian
Tue, 29 Apr 2014

15:45 - 16:45
L4

Comparing curve-counting invariants

Cristina Manolache
(Imperial College)
Abstract

Counting curves with given topological properties in a variety is a very old question. Example questions are: How many conics pass through five points in a plane, how many lines are there on a Calabi-Yau 3-fold? There are by now several ways to count curves and the numbers coming from different curve counting theories may be different. We would then like to have methods to compare these numbers. I will present such a general method and show how it works in the case of stable maps and stable quasi-maps.

Tue, 11 Mar 2014

15:45 - 16:45
L4

Freeness of critical cohomological Hall algebras, Kac polynomials and character varieties II

Ben Davison
(EPFL Lausanne)
Abstract

I will discuss some very well studied cohomology groups that turn out to be captured by the machinery of critical CoHAs, for example the compactly supported cohomology of singular quiver varieties and untwisted character varieties. I will explain the usefulness of this extra CoHA structure on these groups, starting with a new proof of the Kac conjecture, and discuss a conjectural form for the CoHA associated to untwisted character varieties that provides a new way to think about the conjectures of Hausel and Rodriguez-Villegas. Finally I will discuss an approach to purity for the compactly supported cohomology of quiver varieties and a related approach to a conjecture of Shiffmann and Vasserot, analogous to Kirwan surjectivity for the stack of commuting matrices.

Tue, 11 Mar 2014

14:00 - 15:00
L4

Freeness of critical cohomological Hall algebras, Kac polynomials and character varieties I

Ben Davison
(EPFL Lausanne)
Abstract

The cohomological Hall algebra of vanishing cycles associated to a quiver with potential is a categorification of the refined DT invariants associated to the same data, and also a very powerful tool for calculating them and proving positivity and integrality conjectures. This becomes especially true if the quiver with potential is "self dual" in a sense to be defined in the talk. After defining and giving a general introduction to the relevant background, I will discuss the main theorem regarding such CoHAs: they are free supercommutative.

Tue, 04 Mar 2014

15:45 - 16:45
L4

Factorization homology is a fully extended TFT

Damien Calaque
(ETH Zurich)
Abstract

We will start with a recollection on factorization algebras and factorization homology. We will then explain what fully extended TFTs are, after Jacob Lurie. And finally we will see how factorization homology can be turned into a fully extended TFT. This is a joint work with my student Claudia Scheimbauer.

Tue, 04 Mar 2014

14:00 - 15:00
L4

Lagrangian structures on derived mapping stacks

Damien Calaque
(ETH Zurich)
Abstract

We will explain how the result of Pantev-Toën-Vaquié-Vezzosi, about shifted symplectic structures on mapping stacks, can be extended to relative mapping stacks and Lagrangian structures. We will also provide applications in ordinary symplectic geometry and topological field theories.

Tue, 25 Feb 2014

15:45 - 16:45
L4

Buildings, Spectral Networks, and the Asymptotics of Monodromy

Pranav Pandit
(Vienna)
Abstract

The talk will focus on how the asymptotic behavior of the Riemann-Hilbert correspondence (and, conjecturally, the non-abelian Hodge correspondence) on a Riemann surface is controlled by certain harmonic maps from the Riemann surface to affine buildings. This is part of joint work with Katzarkov, Noll and Simpson, which revisits, from the perspective afforded by the theory of harmonic maps to buildings, the work of Gaiotto, Moore and Neitzke on spectral networks, WKB problems, BPS states and wall-crossing.

Tue, 25 Feb 2014

14:00 - 15:00
L4

(n+ε)-dimensional TQFTs and a higher dimensional Deligne conjecture

Kevin Walker
(Santa Barbara)
Abstract

The classical Deligne conjecture (now a theorem with several published proofs) says that chains on the little disks operad act on Hochschild cohomology.  I'll describe a higher dimensional generalization of this result.  In fact, even in the dimension of the original Deligne conjecture the generalization has something new to say:  Hochschild chains and Hochschild cochains are the first two members of an infinite family of chain complexes associated to an arbitrary associative algebra, and there is a colored, higher genus operad which acts on these chain complexes.  The Connes differential and Gerstenhaber bracket are two of the simplest generators of the homology of this operad, and I'll show that there exist additional, independent generators.  These new generators are close cousins of Connes and Gerstenhaber which, so far as I can tell, have not been described in the literature.

Tue, 18 Feb 2014

14:00 - 15:00
L4

Mixed Tate motivic graphs I

Susama Agarwala
(Oxford)
Abstract

In 1992 (or thereabouts) Bloch and Kriz gave the first explicit definition of the category of mixed Tate motives (MTM). Their definition relies heavily on the theory of algebraic cycles. Unfortunately, traditional methods of representing algebraic cycles (such as in terms of formal linear combinations of systems of polynomial equations) are notoriously difficult to work with, so progress in capitalizing on this description of the category to illuminate outstanding conjectures in the field has been slow. More recently, Gangl, Goncharov, and Levin suggested a simpler way to understand this category (and by extension, algebraic cycles more generally) by relating specific algebraic cycles to rooted, decorated, planar trees. In our talks, describing work in progress, we generalize this correspondence and attempt to systematize the connection between algebraic cycles and graphs. We will construct a Lie coalgebra L from a certain algebra of admissible graphs, discuss various properties that it satisfies (such as a well defined and simply described realization functor to the category of mixed Hodge structures), and relate the category of co-representations of L to the category MTM. One promising consequence of our investigations is the appearance of alternative bases of rational motives that have not previously appeared in the literature, suggesting a richer rational structure than had been previously suspected. In addition, our results give the first bounds on the complexity of computing admissibility of algebraic cycles, a previously unexplored topic.

Thu, 13 Feb 2014

16:30 - 17:30
L1

Running the MMP via homological methods (COW SEMINAR)

Michael Wemyss
(University of Edinburgh)
Abstract

I will explain how, given a crepant morphism with one-dimensional fibres between 3-folds, it is possible to use noncommutative deformations to run the MMP in a satisfyingly algorithmic fashion.  As part of this, a flop is viewed homologically as the solution to a universal property, and so is constructed not by changing GIT, but instead by changing the algebra. Carrying this extra information of the new algebra allows us to continue to flop, and thus continue the MMP, without having to calculate everything from scratch. Proving things in this manner does in fact have other consequences too, and I will explain some them, both theoretical and computational.

Thu, 13 Feb 2014

14:45 - 15:45
L4

Crossed simplicial groups and invariants of structured surfaces

Tobias Dyckerhoff
(University of Oxford)
Abstract

Crossed simplicial groups were introduced independently by Krasauskas and Fiedorowicz-Loday as analogues of Connes' cyclic category. In this talk, I will explain a new perspective on a certain class of crossed simplicial groups, relating them to structured surfaces. This provides a combinatorial approach to categorical invariants of surfaces which leads to known, expected, and new examples. (Based on joint work with Mikhail Kapranov.)

Tue, 11 Feb 2014

15:45 - 16:45
L4

Symplectic cohomology and circle-actions

Alexander Ritter
(Oxford)
Abstract

I will explain how to compute the symplectic cohomology of a manifold $M$ conical at infinity, whose Reeb flow at infinity arises from a Hamiltonian circle-action on $M$. For example, this allows one to compute the symplectic cohomology of negative line bundles in terms of the quantum cohomology, and (in joint work with Ivan Smith) via the open-closed string map one can determine the wrapped Fukaya category of negative line bundles over projective space. In this talk, I will show that one can explicitly compute the quantum cohomology and symplectic cohomology of Fano toric negative line bundles, which are in fact different cohomology groups, and surprisingly it is actually the symplectic cohomology which recovers the Jacobian ring of the Landau-Ginzburg superpotential.

Tue, 11 Feb 2014

14:00 - 15:00
L4

Uniqueness Theorems for Smoothing Special Lagrangians

Yohsuke Imagi
(Kyoto)
Abstract

Special Lagranigian submanifolds are area-minimizing Lagrangian submanifolds of Calabi--Yau manifolds. One can define the moduli space of compact special Lagrangian submanifolds of a (fixed) Calabi--Yau manifold. Mclean proves it has a structure of manifold (of dimension finite). It isn't compact in general, but one can compactify it by using geometric measure theory.

Kontsevich conjectured a mirror symmetry, and special Lagrangians should be "mirror" to holomorphic vector bundles. By using algebraic geometry one can compactify the moduli space of holomorphic vector bundles. By "counting" holomorphic vector bundles in Calabi--Yau 3-folds Richard Thomas defined holomorphic Casson invariants (Donaldson-Thomas invariants).

So far as I know it's an open question (probably very difficult) whether one can "count" special Lagrangians, or define a nice structure on the (compactified) moduli space of special Lagrangians.

To do it one has to study singularities of special Lagrangians.

One can smooth singularities in suitable situations: given a singular special Lagrangian, one can construct smooth special Lagrangians tending to it (by the gluing technique). I've proved a uniqueness theorem in a "symmetric" situation: given a symmetric singularity, there's only one way to smooth it (the point of the proof is that the symmetry reduces the problem to an ordinary differential equation).

More recently I've studied a non-symmetric situation together with Dominic Joyce and Joana Oliveira dos Santos Amorim. Our method is based on Lagrangian Floer theory, and is effective at least for pairs of two (special) Lagrangian planes intersecting transversely.

I'll give the details in the talk.