### A Ramsey Characterisation of Eventually Periodic Words

## Abstract

A factorisation $x=u_1u_2\cdots$ of an infinite word $x$ on alphabet $X$ is called ‘super-monochromatic’, for a given colouring of the finite words $X^{\ast}$ on alphabet $X$, if each word $u_{k_1}u_{k_2}\cdots u_{k_n}$, where $k_1<\cdots<k_n$, is the same colour. A direct application of Hindman’s theorem shows that if $x$ is eventually periodic, then for every finite colouring of $X^{\ast}$, there exist a suffix of $x$ that admits a super-monochromatic factorisation. What about the converse?

In this talk we show that the converse does indeed hold: thus a word $x$ is eventually periodic if and only if for every finite colouring of $X^{\ast}$ there is a suffix of $x$ having a super-monochromatic factorisation. This has been a conjecture in the community for some time. Our main tool is a Ramsey result about alternating sums. This provides a strong link between Ramsey theory and the combinatorics of infinite words.

Joint work with Imre Leader and Luca Q. Zamboni