Forthcoming events in this series


Thu, 18 Oct 2012

14:00 - 15:00
Gibson Grd floor SR

FEM/BEM coupling for wave propagation

Dr Lehel Banjai
(Heriot-Watt University)
Abstract

We will discuss the numerical simulation of acoustic wave propagation with localized inhomogeneities. To do this we will apply a standard finite element method (FEM) in space and explicit time-stepping in time on a finite spatial domain containing the inhomogeneities. The equations in the exterior computational domain will be dealt with a time-domain boundary integral formulation discretized by the Galerkin boundary element method (BEM) in space and convolution quadrature in time.

\\

\\

We will give the analysis of the proposed method, starting with the proof of a positivity preservation property of convolution quadrature as a consequence of a variant of the Herglotz theorem. Combining this result with standard energy analysis of leap-frog discretization of the interior equations will give us both stability and convergence of the method. Numerical results will also be given.

Thu, 11 Oct 2012

14:00 - 15:00
Gibson Grd floor SR

Automated parallel adjoints for model differentiation, optimisation and stability analysis

Dr Patrick Farrell
(Imperial College London)
Abstract

The derivatives of PDE models are key ingredients in many

important algorithms of computational science. They find applications in

diverse areas such as sensitivity analysis, PDE-constrained

optimisation, continuation and bifurcation analysis, error estimation,

and generalised stability theory.

\\

\\

These derivatives, computed using the so-called tangent linear and

adjoint models, have made an enormous impact in certain scientific fields

(such as aeronautics, meteorology, and oceanography). However, their use

in other areas has been hampered by the great practical

difficulty of the derivation and implementation of tangent linear and

adjoint models. In his recent book, Naumann (2011) describes the problem

of the robust automated derivation of parallel tangent linear and

adjoint models as "one of the great open problems in the field of

high-performance scientific computing''.

\\

\\

In this talk, we present an elegant solution to this problem for the

common case where the original discrete forward model may be written in

variational form, and discuss some of its applications.

Thu, 04 Oct 2012

14:00 - 15:00
Gibson Grd floor SR

The Science of Ice Sheets: the Mathematical Modeling and Computational Simulation of Ice Flows

Professor Max Gunzburger
(Florida State University)
Abstract

The melting of ice in Greenland and Antarctica would, of course, be by far the major contributor any possible sea level rise. Thus, to make science-based predictions about sea-level rise, it is crucial that the ice sheets covering those land masses be accurately mathematically modeled and computationally simulated. In fact, the 2007 IPCC report on the state of the climate did not include predictions about sea level rise because it was concluded there that the science of ice sheets was not developed to a sufficient degree. As a result, predictions could not be rationally and

confidently made. In recent years, there has been much activity in trying to improve the state-of-the-art of ice sheet modeling and simulation. In

this lecture, we review a hierarchy of mathematical models for the flow of ice, pointing out the relative merits and demerits of each, showing how

they are coupled to other climate system components (ocean and atmosphere), and discussing where further modeling work is needed. We then discuss algorithmic approaches for the approximate solution of ice sheet flow models and present and compare results obtained from simulations using the different mathematical models.

Thu, 14 Jun 2012

14:00 - 15:00
Gibson Grd floor SR

Piecewise constant control approximation to multi-dimensional HJB equations

Dr Christoph Reisinger
(University of Oxford)
Abstract

While a general framework of approximating the solution to Hamilton-Jacobi-Bellman (HJB) equations by difference methods is well established, and efficient numerical algorithms are available for one-dimensional problems, much less is known in the multi-dimensional case. One difficulty is the monotone approximation of cross-derivatives, which guarantees convergence to the viscosity solution. We propose a scheme combining piecewise freezing of the policies in time with a suitable spatial discretisation to establish convergence for a wide class of equations, and give numerical illustrations for a diffusion equation with uncertain parameters. These equations arise, for instance, in the valuation of financial derivatives under model uncertainty.

This is joint work with Peter Forsyth.

Thu, 07 Jun 2012

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

From Numerical Rocks to Spatial Data Assimilation

Dr Chris Farmer
(University of Oxford)
Abstract

Uncertainty quantification can begin by specifying the initial state of a system as a probability measure. Part of the state (the 'parameters') might not evolve, and might not be directly observable. Many inverse problems are generalisations of uncertainty quantification such that one modifies the probability measure to be consistent with measurements, a forward model and the initial measure. The inverse problem, interpreted as computing the posterior probability measure of the states, including the parameters and the variables, from a sequence of noise-corrupted observations, is reviewed in the talk. Bayesian statistics provides a natural framework for a solution but leads to very challenging computational problems, particularly when the dimension of the state space is very large, as when arising from the discretisation of a partial differential equation theory.

\\

\\

In this talk we show how the Bayesian framework leads to a new algorithm - the 'Variational Smoothing Filter' - that unifies the leading techniques in use today. In particular the framework provides an interpretation and generalisation of Tikhonov regularisation, a method of forecast verification and a way of quantifying and managing uncertainty. To deal with the problem that a good initial prior may not be Gaussian, as with a general prior intended to describe, for example a geological structure, a Gaussian mixture prior is used. This has many desirable properties, including ease of sampling to make 'numerical rocks' or 'numerical weather' for visualisation purposes and statistical summaries, and in principle can approximate any probability density. Robustness is sought by combining a variational update with this full mixture representation of the conditional posterior density.

Thu, 31 May 2012

14:00 - 15:00
Gibson Grd floor SR

High order adaptive finite element approximations for cardiac electrophysiology

Dr David Kay
(University of Oxford)
Abstract

This talk will present a computationally efficient method of simulating cardiac electrical propagation using an

adaptive high-order finite element method. The refinement strategy automatically concentrates computational

effort where it is most needed in space on each time-step. We drive the adaptivity using a residual-based error

indicator, and demonstrate using norms of the error that the indicator allows to control it successfully. Our

results using two-dimensional domains of varying complexity demonstrate in that significant improvements in

efficiency are possible over the state-of-the-art, indicating that these methods should be investigated for

implementation in whole-heart scale software.

Thu, 24 May 2012

14:00 - 15:00
Gibson Grd floor SR

A linear eigenvalue algorithm for nonlinear eigenvalue problems

Dr Elias Jarlebring
(KTH Stockholm)
Abstract

The Arnoldi method for standard eigenvalue problems possesses several

attractive properties making it robust, reliable and efficient for

many problems. We will present here a new algorithm equivalent to the

Arnoldi method, but designed for nonlinear eigenvalue problems

corresponding to the problem associated with a matrix depending on a

parameter in a nonlinear but analytic way. As a first result we show

that the reciprocal eigenvalues of an infinite dimensional operator.

We consider the Arnoldi method for this and show that with a

particular choice of starting function and a particular choice of

scalar product, the structure of the operator can be exploited in a

very effective way. The structure of the operator is such that when

the Arnoldi method is started with a constant function, the iterates

will be polynomials. For a large class of NEPs, we show that we can

carry out the infinite dimensional Arnoldi algorithm for the operator

in arithmetic based on standard linear algebra operations on vectors

and matrices of finite size. This is achieved by representing the

polynomials by vector coefficients. The resulting algorithm is by

construction such that it is completely equivalent to the standard

Arnoldi method and also inherits many of its attractive properties,

which are illustrated with examples.

Thu, 17 May 2012

14:00 - 15:00
Gibson Grd floor SR

Towards time-stepping-free solution of large initial value problems by block Krylov projections

Dr Mike Botchev
(University of Twente)
Abstract

Exponential time integrators are a powerful tool for numerical solution

of time dependent problems. The actions of the matrix functions on vectors,

necessary for exponential integrators, can be efficiently computed by

different elegant numerical techniques, such as Krylov subspaces.

Unfortunately, in some situations the additional work required by

exponential integrators per time step is not paid off because the time step

can not be increased too much due to the accuracy restrictions.

To get around this problem, we propose the so-called time-stepping-free

approach. This approach works for linear ordinary differential equation (ODE)

systems where the time dependent part forms a small-dimensional subspace.

In this case the time dependence can be projected out by block Krylov

methods onto the small, projected ODE system. Thus, there is just one

block Krylov subspace involved and there are no time steps. We refer to

this method as EBK, exponential block Krylov method. The accuracy of EBK

is determined by the Krylov subspace error and the solution accuracy in the

projected ODE system. EBK works for well for linear systems, its extension

to nonlinear problems is an open problem and we discuss possible ways for

such an extension.

Thu, 10 May 2012

14:00 - 15:00
Gibson Grd floor SR

Frequency-independent approximation of integral formulations of Helmholtz boundary value problems

Professor Mario Bebendorf
(University of Bonn)
Abstract

We present recent numerical techniques for the treatment of integral formulations of Helmholtz boundary value problems in the case of high frequencies. The combination of $H^2$-matrices with further developments of the adaptive cross approximation allows to solve such problems with logarithmic-linear complexity independent of the frequency. An advantage of this new approach over existing techniques such as fast multipole methods is its stability over the whole range of frequencies, whereas other methods are efficient either for low or high frequencies.

Thu, 03 May 2012

14:00 - 15:00
Gibson Grd floor SR

The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces

Dr Cécile Piret
(Université catholique de Louvain.)
Abstract

Although much work has been done on using RBFs for reconstructing arbitrary surfaces, using RBFs to solve PDEs on arbitrary manifolds is only now being considered and is the subject of this talk. We will review current methods and introduce a new technique that is loosely inspired by the Closest Point Method. This new technique, the Orthogonal Gradients Method (OGr), benefits from the advantages of using RBFs: the simplicity, the high accuracy but also the meshfree character, which gives the flexibility to represent the most complex geometries in any dimension.

Thu, 26 Apr 2012

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

qr_mumps: a multithreaded multifrontal QR solver

Dr Alfredo Buttari
(CNRS-IRIT Toulouse)
Abstract

The advent of multicore processors represents a disruptive event in the history of computer science as conventional parallel programming paradigms are proving incapable of fully exploiting their potential for concurrent computations. The need for different or new programming models clearly arises from recent studies which identify fine-granularity and dynamic execution as the keys to achieve high efficiency on multicore systems. This talk shows how these models can be effectively applied to the multifrontal method for the QR factorization of sparse matrices providing a very high efficiency achieved through a fine-grained partitioning of data and a dynamic scheduling of computational tasks relying on a dataflow parallel programming model. Moreover, preliminary results will be discussed showing how the multifrontal QR factorization can be accelerated by using low-rank approximation techniques.

Thu, 19 Apr 2012

14:00 - 15:00
Gibson Grd floor SR

Navier-Stokes-Fokker-Planck systems: analysis and approximation

Professor Endre Süli
(University of Oxford)
Abstract

The talk will survey recent developments concerning the existence and the approximation of global weak solutions to a general class of coupled microscopic-macroscopic bead-spring chain models that arise in the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier-Stokes equations in a bounded domain for the velocity and the pressure of the fluid, with an elastic extra-stress tensor appearing on the right-hand side of the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined by the Kramers expression through the associated probability density function that satisfies a Fokker-Planck type parabolic equation. Models of this kind were proposed in work of Hans Kramers in the early 1940's, and the existence of global weak solutions to the model has been a long-standing question in the mathematical analysis of kinetic models of dilute polymers.

\\

\\

We also discuss computational challenges associated with the numerical approximation of the high-dimensional Fokker-Planck equation featuring in the model.

Thu, 08 Mar 2012

14:00 - 15:00
Gibson Grd floor SR

Solution of ill-posed inverse problems pertaining to signal restoration

Professor Rosie Renaut
(Arizona State University)
Abstract

In this talk I review the use of the spectral decomposition for understanding the solution of ill-posed inverse problems. It is immediate to see that regularization is needed in order to find stable solutions. These solutions, however, do not typically allow reconstruction of signal features such as edges. Generalized regularization assists but is still insufficient and methods of total variation are commonly suggested as an alternative. In the talk I consider application of standard approaches from Tikhonov regularization for finding appropriate regularization parameters in the total variation augmented Lagrangian implementations. Areas for future research will be considered.

Thu, 01 Mar 2012

14:00 - 15:00
Gibson Grd floor SR

Two-Grid hp-Adaptive Discontinuous Galerkin Finite Element Methods for Second-Order Quasilinear Elliptic PDEs

Professor Paul Houston
(University of Nottingham)
Abstract

In this talk we present an overview of some recent developments concerning the a posteriori error analysis and adaptive mesh design of $h$- and $hp$-version discontinuous Galerkin finite element methods for the numerical approximation of second-order quasilinear elliptic boundary value problems. In particular, we consider the derivation of computable bounds on the error measured in terms of an appropriate (mesh-dependent) energy norm in the case when a two-grid approximation is employed. In this setting, the fully nonlinear problem is first computed on a coarse finite element space $V_{H,P}$. The resulting 'coarse' numerical solution is then exploited to provide the necessary data needed to linearise the underlying discretization on the finer space $V_{h,p}$; thereby, only a linear system of equations is solved on the richer space $V_{h,p}$. Here, an adaptive $hp$-refinement algorithm is proposed which automatically selects the local mesh size and local polynomial degrees on both the coarse and fine spaces $V_{H,P}$ and $V_{h,p}$, respectively. Numerical experiments confirming the reliability and efficiency of the proposed mesh refinement algorithm are presented.

Thu, 23 Feb 2012

14:00 - 15:00
Gibson Grd floor SR

High frequency scattering by non-convex polygons

Dr Stephen Langdon
(University of Reading)
Abstract

Standard numerical schemes for acoustic scattering problems suffer from the restriction that the number of degrees of freedom required to achieve a prescribed level of accuracy must grow at least linearly with respect to frequency in order to maintain accuracy as frequency increases. In this talk, we review recent progress on the development and analysis of hybrid numerical-asymptotic boundary integral equation methods for these problems. The key idea of this approach is to form an ansatz for the solution based on knowledge of the high frequency asymptotics, allowing one to achieve any required accuracy via the approximation of only (in many cases provably) non-oscillatory functions. In particular, we discuss very recent work extending these ideas for the first time to non-convex scatterers.

Thu, 09 Feb 2012

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Efficient, communication-minimizing algorithms for the symmetric eigenvalue decomposition and the singular value decomposition

Dr Yuji Nakatsukasa
(University of Manchester)
Abstract

Computing the eigenvalue decomposition of a symmetric matrix and the singular value decomposition of a general matrix are two of the central tasks in numerical linear algebra. There has been much recent work in the development of linear algebra algorithms that minimize communication cost. However, the reduction in communication cost sometimes comes at the expense of significantly more arithmetic and potential instability.

\\

\\

In this talk I will describe algorithms for the two decompositions that have optimal communication cost and arithmetic cost within a small factor of those for the best known algorithms. The key idea is to use the best rational approximation of the sign function, which lets the algorithm converge in just two steps. The algorithms are backward stable and easily parallelizable. Preliminary numerical experiments demonstrate their efficiency.

Thu, 02 Feb 2012

14:00 - 15:00
Gibson Grd floor SR

Optimal Newton-type methods for nonconvex smooth optimization

Dr Coralia Cartis
(University of Edinburgh)
Abstract

We show that the steepest-descent and Newton's methods for unconstrained nonconvex optimization

under standard assumptions may both require a number of iterations and function evaluations

arbitrarily close to the steepest-descent's global worst-case complexity bound. This implies that

the latter upper bound is essentially tight for steepest descent and that Newton's method may be as

slow as the steepest-descent method in the worst case. Then the cubic regularization of Newton's

method (Griewank (1981), Nesterov & Polyak (2006)) is considered and extended to large-scale

problems, while preserving the same order of its improved worst-case complexity (by comparison to

that of steepest-descent); this improved worst-case bound is also shown to be tight. We further

show that the cubic regularization approach is, in fact, optimal from a worst-case complexity point

of view amongst a wide class of second-order methods. The worst-case problem-evaluation complexity

of constrained optimization will also be discussed. This is joint work with Nick Gould (Rutherford

Appleton Laboratory, UK) and Philippe Toint (University of Namur, Belgium).

Thu, 26 Jan 2012

14:00 - 15:00
Gibson Grd floor SR

Interior Point warmstarts and stochastic programming

Dr Andreas Grothey
(University of Edinburgh)
Abstract

We present progress on an Interior Point based multi-step solution approach for stochastic programming problems. Our approach works with a series of scenario trees that can be seen as successively more accurate discretizations of an underlying probability distribution and employs IPM warmstarts to "lift" approximate solutions from one tree to the next larger tree.

Thu, 12 Jan 2012

14:00 - 15:00
Gibson Grd floor SR

Spectral decompositions and nonnormality of boundary integral operators in acoustic scattering

Dr Timo Betcke
(University College London)
Abstract

Nonnormality is a well studied subject in the context of partial differential operators. Yet, only little is known for boundary integral operators. The only well studied case is the unit ball, where the standard single layer, double layer and conjugate double layer potential operators in acoustic scattering diagonalise in a unitary basis. In this talk we present recent results for the analysis of spectral decompositions and nonnormality of boundary integral operators on more general domains. One particular application is the analysis of stability constants for boundary element discretisations. We demonstrate how these are effected by nonnormality and give several numerical examples, illustrating these issues on various domains.

Thu, 05 Jan 2012

11:30 - 12:30
Gibson 1st Floor SR

Orthogonality and stability in large matrix iterative algorithms

Professor Chris Paige
(McGill University)
Abstract

Many iterative algorithms for large sparse matrix problems are based on orthogonality (or $A$-orthogonality, bi-orthogonality, etc.), but these properties can be lost very rapidly using vector orthogonalization (subtracting multiples of earlier supposedly orthogonal vectors from the latest vector to produce the next orthogonal vector). Yet many of these algorithms are some of the best we have for very large sparse problems, such as Conjugate Gradients, Lanczos' method for the eigenproblem, Golub and Kahan bidiagonalization, and MGS-GMRES.

\\

\\

Here we describe an ideal form of orthogonal matrix that arises from any sequence of supposedly orthogonal vectors. We illustrate some of its fascinating properties, including a beautiful measure of orthogonality of the original set of vectors. We will indicate how the ideal orthogonal matrix leads to expressions for new concepts of stability of such iterative algorithm. These are expansions of the concept of backward stability for matrix transformation algorithms that was so effectively developed and applied by J. H. Wilkinson (FRS). The resulting new expressions can be used to understand the subtle and effective performance of some (and hopefully eventually all) of these iterative algorithms.

Thu, 01 Dec 2011

14:00 - 15:00
Gibson Grd floor SR

Climate, Assimilation of Data and Models - When Data Fail Us

Prof Juan Restrepo
(University of Arizona)
Abstract

The fundamental task in climate variability research is to eke

out structure from climate signals. Ideally we want a causal

connection between a physical process and the structure of the

signal. Sometimes we have to settle for a correlation between

these. The challenge is that the data is often poorly

constrained and/or sparse. Even though many data gathering

campaigns are taking place or are being planned, the very high

dimensional state space of the system makes the prospects of

climate variability analysis from data alone impractical.

Progress in the analysis is possible by the use of models and

data. Data assimilation is one such strategy. In this talk we

will describe the methodology, illustrate some of its

challenges, and highlight some of the ways our group has

proposed to improving the methodology.

Thu, 24 Nov 2011

14:00 - 15:00
Gibson Grd floor SR

Energy-law preserving continuous finite element methods for simulation of liquid crystal and multi-phase flows

Prof Ping Lin
(University of Dundee)
Abstract

The liquid crystal (LC) flow model is a coupling between

orientation (director field) of LC molecules and a flow field.

The model may probably be one of simplest complex fluids and

is very similar to a Allen-Cahn phase field model for

multiphase flows if the orientation variable is replaced by a

phase function. There are a few large or small parameters

involved in the model (e.g. the small penalty parameter for

the unit length LC molecule or the small phase-change

parameter, possibly large Reynolds number of the flow field,

etc.). We propose a C^0 finite element formulation in space

and a modified midpoint scheme in time which accurately

preserves the inherent energy law of the model. We use C^0

elements because they are simpler than existing C^1 element

and mixed element methods. We emphasise the energy law

preservation because from the PDE analysis point of view the

energy law is very important to correctly catch the evolution

of singularities in the LC molecule orientation. In addition

we will see numerical examples that the energy law preserving

scheme performs better under some choices of parameters. We

shall apply the same idea to a Cahn-Hilliard phase field model

where the biharmonic operator is decomposed into two Laplacian

operators. But we find that under our scheme non-physical

oscillation near the interface occurs. We figure out the

reason from the viewpoint of differential algebraic equations

and then remove the non-physical oscillation by doing only one

step of a modified backward Euler scheme at the initial time.

A number of numerical examples demonstrate the good

performance of the method. At the end of the talk we will show

how to apply the method to compute a superconductivity model,

especially at the regime of Hc2 or beyond. The talk is based

on a few joint papers with Chun Liu, Qi Wang, Xingbin Pan and

Roland Glowinski, etc.