Lagrangian Floer cohomology can be enriched by using local coefficients to record some homotopy data about the boundaries of the holomorphic disks counted by the theory. In this talk I will explain how one can do this under the monotonicity assumption and when the Lagrangians are equipped with local systems of rank higher than one. The presence of holomorphic discs of Maslov index 2 poses a potential obstruction to such an extension. However, for an appropriate choice of local systems the obstruction might vanish and, if not,

one can always restrict to some natural unobstructed subcomplexes. I will showcase these constructions with some explicit calculations for the Chiang Lagrangian in CP^3 showing that it cannot be disjoined from RP^3 by a Hamiltonian isotopy, answering a question of Evans-Lekili. Time permitting, I will also discuss some work-in-progress on the topology of monotone Lagrangians in CP^3, part of which follows from more general joint work with Jack Smith on the topology of monotone Lagrangians of maximal Maslov number in

projective spaces.