I will discuss the geometric interpretation of the twisted index of 3d supersymmetric gauge theories on a closed Riemann surface. In the first part of the talk, I will show that the twisted index computes the virtual Euler characteristic of the moduli space of solutions to vortex equations on the Riemann surface, which can be understood algebraically as quasi-maps to the Higgs branch. I will explain 3d N=4 mirror symmetry in this context, which implies non-trivial relations between enumerative invariants associated to these moduli spaces. Finally, I will present a wall-crossing formula for these invariants derived from the gauge theory point of view.

# Past Geometry and Analysis Seminar

Morse theory has a long history with many spectacular applications in different areas of mathematics. In this talk I will explain an extension of the main theorem of Morse theory that works for a large class of functions on singular spaces. The main example to keep in mind is that of moment maps on varieties, and I will present some applications to the topology of symplectic quotients of singular spaces.

We show that homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds, using that they admit periodic, integrally minimal foliations by homogeneous hypersurfaces. For the geometric flow induced by the orbit-Einstein condition, we construct a Lyapunov function based on curvature estimates which come from real GIT.

McDuff and Schlenk determined when a four-dimensional symplectic ellipsoid can be symplectically embedded into a four-dimensional ball. They found that if the ellipsoid is close to round, the answer is given by an ``infinite staircase" determined by the odd index Fibonacci numbers, while if the ellipsoid is sufficiently stretched, all obstructions vanish except for the volume obstruction. Infinite staircases have also been found when embedding ellipsoids into polydisks (Frenkel - Muller, Usher) and into the ellipsoid E(2, 3) (Cristofaro-Gardiner - Kleinman). In this talk, we will see how the sharpness of ECH capacities for embedding of ellipsoids implies the existence of infinite staircases for these and three other target spaces. We will then discuss the relationship with toric varieties, lattice point counting, and the Philadelphia subway system. This is joint work with Dan Cristofaro-Gardiner, Alessia Mandini,

and Ana Rita Pires.

Conical Symplectic Resolutions form a broad family of holomorphic symplectic manifolds that are of interest to mathematical physicists, algebraic geometers, and representation theorists; Nakajima Quiver Varieties and Hypertoric Varieties are known as their special cases. In this talk, I will be focused on the Symplectic Geometry of Conical Symplectic Resolutions, and its non-symplectic applications. More precisely, I will talk about my work on finding Exact Lagrangian Submanifolds inside CSRs, and work in progress (joint with Alexander Ritter) about the construction of Symplectic Cohomology on CSRs.

The aim of this talk is to describe joint work with Gergely Berczi using a recent extension to non-reductive actions of geometric invariant theory, and its links with moment maps in symplectic geometry, to study hyperbolicity of generic hypersurfaces in a projective space. Using intersection theory for non-reductive GIT quotients applied to compactifications of bundles of invariant jet differentials over complex manifolds leads to a proof of the Green-Griffiths-Lang conjecture for a generic projective hypersurface of dimension n whose degree is greater than n^6. A recent result of Riedl and Yang then implies the Kobayashi conjecture for generic hypersurfaces of degree greater than (2n-1)^6.

In this talk we will discuss a new approach to non rationality of projective varieties based on HMS. Examples will be discussed.

In this talk I will discuss a new proposal for constructing quantizations of holomorphic Poisson structures, and generalized complex manifolds more generally, which is based on using the A model of an associated symplectic manifold known as a Morita equivalence. This construction will be illustrated through the example of toric Poisson structures.

The Green's function of the Laplace operator has been widely studied in geometric analysis. Manifolds admitting a positive Green's function are called nonparabolic. By Li and Yau, sharp pointwise decay estimates are known for the Green's function on nonparabolic manifolds that have nonnegative Ricci

curvature. The situation is more delicate when curvature is not nonnegative everywhere. While pointwise decay estimates are generally not possible in this

case, we have obtained sharp integral decay estimates for the Green's function on manifolds admitting a Poincare inequality and an appropriate (negative) lower bound on Ricci curvature. This has applications to solving the Poisson equation, and to the study of the structure at infinity of such manifolds.

In the talk I will discuss the following result and related analytic and geometric questions: On the boundary of any convex body in the Euclidean space there exists at least one infinite geodesic.