The Spin(7) and SU(4) structures on a Calabi-Yau 4-fold give rise to certain first order PDEs defining special Yang-Mills connections: the Spin(7) instanton equations and the Hermitian Yang-Mills (HYM) equations respectively. The latter are stronger than the former. In 1998 C. Lewis proved that -over a compact base space- the existence of an HYM connection implies the converse. In this talk we demonstrate that the equivalence of the two gauge-theoretic problems fails to hold in generality. We do this by studying the invariant solutions on a highly symmetric noncompact Calabi-Yau 4-fold: the Stenzel manifold. We give a complete description of the moduli space of irreducible invariant Spin(7) instantons with structure group SO(3) on this space and find that the HYM connections are properly embedded in it. This moduli space reveals an explicit example of a sequence of Spin(7) instantons bubbling off near a Cayley submanifold. The missing limit is an HYM connection, revealing a potential relationship between the two equation systems.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).