Past Geometry and Analysis Seminar

22 June 2020
14:15
Fatemeh Rezaee
Abstract

In this talk, I will explain a new wall-crossing phenomenon on P^3 that induces non-Q-factorial singularities and thus cannot be understood as an operation in the MMP of the moduli space, unlike the case for many surfaces.  If time permits, I will explain how the wall-crossing could help to understand the geometry of the associated Hilbert scheme and PT moduli space.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Geometry and Analysis Seminar
15 June 2020
14:15
Tom Bridgeland
Abstract

I will describe an ongoing research project which aims to encode the DT invariants of a CY3 triangulated category in a geometric structure on its space of stability conditions. More specifically we expect to find a complex hyperkahler structure on the total space of the tangent bundle. These ideas are closely related to the work of Gaiotto, Moore and Neitzke from a decade ago. The main analytic input is a class of Riemann-Hilbert problems involving maps from the complex plane to an algebraic torus with prescribed discontinuities along a collection of rays.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Geometry and Analysis Seminar
8 June 2020
14:15
Tommaso Pacini
Abstract

Calibrated geometry, more specifically Calabi-Yau geometry, occupies a modern, rather sophisticated, cross-roads between Riemannian, symplectic and complex geometry. We will show how, stripping this theory down to its fundamental holomorphic backbone and applying ideas from classical complex analysis, one can generate a family of purely holomorphic invariants on any complex manifold. We will then show how to compute them, and describe various situations in which these invariants encode, in an intrinsic fashion, properties not only of the given manifold but also of moduli spaces.

Interest in these topics, if initially lacking, will arise spontaneously during this informal presentation.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Geometry and Analysis Seminar
1 June 2020
14:15
Ailsa Keating
Abstract

Given a log Calabi-Yau surface Y with maximal boundary D, I'll explain how to construct a mirror Landau-Ginzburg model, and sketch a proof of homological mirror symmetry for these pairs when (Y,D) is distinguished within its deformation class (this is mirror to an exact manifold). I'll explain how to relate this to the total space of the SYZ fibration predicted by Gross--Hacking--Keel, and, time permitting, explain ties with earlier work of Auroux--Katzarkov--Orlov and Abouzaid. Joint work with Paul Hacking.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Geometry and Analysis Seminar
25 May 2020
14:15
Cyril Closset
Abstract

I will discuss some ongoing work on three-dimensional supersymmetric gauge theories and their relationship to (equivariant) quantum K-theory. I will emphasise the interplay between the physical and mathematical motivations and approaches, and attempt to build a dictionary between the two.  As an interesting example, I will discuss the quantum K-theory of flag manifolds. The QK ring will be related to the vacuum structure of a gauge theory with Chern-Simons interactions, and the (genus-0) K-theoretic invariants will be computed in terms of explicit residue formulas that can be derived from the relevant supersymmetric path integrals.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Geometry and Analysis Seminar
18 May 2020
14:15
Thomas Prince
Abstract

I will describe the results of two projects on the construction of Calabi-Yau threefolds and certain real Lagrangian submanifolds. The first concerns the construction of a novel dataset of Calabi-Yau threefolds via an application of the Gross-Siebert algorithm to a reducible union of toric varieties obtained by degenerating anti-canonical hypersurfaces in a class of (around 1.5 million) Gorenstein toric Fano fourfolds. Many of these constructions correspond to smoothing such a hypersurface; in contrast to the famous construction of Batyrev-Borisov which exploits crepant resolutions of such hypersurfaces. A central ingredient here is the construction of a certain 'integral affine structure with singularities' on the boundary of a class of polytopes from which one can form a topological model, due to Gross, of the corresponding Calabi-Yau threefold X. In general, such topological models carry a canonical (anti-symplectic) involution i and in the second project, which is joint work with H. Argüz, we describe the fixed point locus of this involution. In particular, we prove that the map i*-1 on graded pieces of a Leray filtration of H^3(X,Z2) can be identified with the map D -> D^2, where D is an element of H^2(X',Z2) and X' is mirror-dual to X. We use this to compute the Z2 cohomology group of the fixed locus, answering a question of Castaño-Bernard--Matessi.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Geometry and Analysis Seminar
11 May 2020
14:15
Dominic Joyce
Abstract

An enumerative invariant theory in Algebraic Geometry, Differential Geometry, or Representation Theory, is the study of invariants which 'count' $\tau$-(semi)stable objects $E$ with fixed topological invariants $[E]=\alpha$ in some geometric problem, by means of a virtual class $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ of the moduli spaces ${\mathcal M}_\alpha^{\rm st}(\tau)\subseteq{\mathcal M}_\alpha^{\rm ss}(\tau)$ of $\tau$-(semi)stable objects in some homology theory. Examples include Mochizuki's invariants counting coherent sheaves on surfaces, Donaldson-Thomas type invariants counting coherent sheaves on Calabi-Yau 3- and 4-folds and Fano 3-folds, and Donaldson invariants of 4-manifolds.

We make conjectures on new universal structures common to many enumerative invariant theories. Any such theory has two moduli spaces ${\mathcal M},{\mathcal M}^{\rm pl}$, where my big vertex algebras project http://people.maths.ox.ac.uk/~joyce/hall.pdf gives $H_*({\mathcal M})$ the structure of a graded vertex algebra, and $H_*({\mathcal M}^{\rm pl})$ a graded Lie algebra, closely related to $H_*({\mathcal M})$. The virtual classes $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ take values in $H_*({\mathcal M}^{\rm pl})$. In most such theories, defining $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ when ${\mathcal M}_\alpha^{\rm st}(\tau)\ne{\mathcal M}_\alpha^{\rm ss}(\tau)$ (in gauge theory, when the moduli space contains reducibles) is a difficult problem. We conjecture that there is a natural way to define $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ in homology over $\mathbb Q$, and that the resulting classes satisfy a universal wall-crossing formula under change of stability condition $\tau$, written using the Lie bracket on $H_*({\mathcal M}^{\rm pl})$. We prove our conjectures for moduli spaces of representations of quivers without oriented cycles.

This is joint work with Jacob Gross and Yuuji Tanaka.

 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Geometry and Analysis Seminar
4 May 2020
14:15
Jacob Gross
Abstract

There are many known ways to compute the homology of the moduli space of algebraic vector bundles on a curve. For higher-dimensional varieties however, this problem is very difficult. It turns out that the moduli stack of objects in the derived category of a variety X, however, is topologically simpler than the moduli stack of vector bundles on X. We compute the rational homology of the moduli stack of complexes in the derived category of a smooth complex projective variety. For a certain class of varieties X including curves, surfaces, flag varieties, and certain 3- and 4-folds we get that the rational cohomology is freely generated by Künneth components of Chern characters of the universal complex––this allows us to identify Joyce's vertex algebra construction with a super-lattice vertex algebra on the rational cohomology of X in these cases. 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Geometry and Analysis Seminar
27 April 2020
14:15
Joe Keir
Abstract

Certain exotic Lorentzian manifolds, including some of importance to string theory, possess an unusual geometric feature called an "evanescent ergosurface". In this talk I will introduce this feature and motivate the study of the wave equation on the associated geometries. It turns out that the presence of an evanescent ergosurface prevents the energy of waves from being uniformly bounded in terms of their initial energy; I will outline the proof of this statement. An immediate corollary is that there do not exist manifolds with both an evanescent ergosurface and a globally timelike Killing vector field.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Geometry and Analysis Seminar
9 March 2020
14:15
Thomas Madsen
Abstract

Exceptional holonomy manifolds come with certain geometric data that include a Ricci flat metric. Finding examples is therefore very difficult. The task can be made more tractable by imposing symmetry.  The focus of this talk is the case of torus symmetry. For a particular rank of the torus, one gets a natural parameterisation of the orbit space in terms of so-called multi-moment maps. I will discuss aspects of the local and global geometry of these 'toric' exceptional holonomy manifolds. The talk is based on joint work with Andrew Swann.

  • Geometry and Analysis Seminar

Pages