Forthcoming events in this series


Mon, 28 Nov 2022
14:15
L5

Monotonicity theorems and how to compare them

Manh Tien Nguyen
((Oxford University))
Abstract

I will present two new results. The first concerns minimal surfaces of the hyperbolic space and is a relation between their renormalised area (in the sense of Graham and Witten) and the length of their ideal boundary measured in different metrics of the conformal infinity. The second result concerns minimal submanifolds of the sphere and is a relation between their volume and antipodal-ness. Both results were obtained from the same framework, which involves new monotonicity theorems and a comparison principle for them. If time permits, I will discuss how to use these to answer questions about uniqueness and non-existence of minimal surfaces.

Mon, 21 Nov 2022
14:15
L5

Cohomological Hall algebras and stable envelopes of Nakajima varieties

Tommaso Maria Botta
(ETH Zurich)
Abstract

Over the last years, two different approaches to construct symmetry algebras acting on the cohomology of Nakajima quiver varieties have been developed. The first one, due to Maulik and Okounkov, exploits certain Lagrangian correspondences, called stable envelopes, to generate R-matrices for an arbitrary quiver and hence, via the RTT formalism, an algebra called Yangian. The second one realises the cohomology of Nakajima varieties as modules over the cohomological Hall algebra (CoHA) of the preprojective algebra of the quiver Q. It is widely expected that these two approaches are equivalent, and in particular that the Maulik-Okounkov Yangian coincides with the Drinfel’d double of the CoHA.

Motivated by this conjecture, in this talk I will show how to identify the stable envelopes themselves with the multiplication map of a subalgebra of the appropriate CoHA. 

As an application, I will introduce explicit inductive formulas for the stable envelopes and use them to produce integral solutions of the elliptic quantum Knizhnik–Zamolodchikov–Bernard (qKZB) difference equation associated to arbitrary quiver (ongoing project with G. Felder and K. Wang). Time permitting, I will also discuss connections with Cherkis bow varieties in relation to 3d Mirror symmetry (ongoing project with R. Rimanyi).

Mon, 14 Nov 2022
14:15
L5

K-theoretic DT/PT invariants on Calabi-Yau 4-(orbi)folds

Sergej Monavari
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

Donaldson-Thomas theory is classically defined for moduli spaces of sheaves over a Calabi-Yau threefold. Thanks to recent foundational work of Cao-Leung, Borisov-Joyce and Oh-Thomas, DT theory has been extended to Calabi-Yau 4-folds. We discuss how, in this context, one can define natural K-theoretic refinements of Donaldson-Thomas invariants (counting sheaves on Hilbert schemes) and Pandharipande-Thomas invariants (counting sheaves on moduli spaces of stable pairs) and how — conjecturally — they are related. Finally, we introduce an extension of DT invariants to Calabi-Yau 4-orbifolds, and propose a McKay-type correspondence, which we expect to be suitably interpreted as a wall-crossing phenomenon. Joint work (in progress) with Yalong Cao and Martijn Kool.

Mon, 07 Nov 2022
14:15
L5

Counting sheaves on curves

Chenjing Bu
((Oxford University))
Abstract

I will talk about homological enumerative invariants for vector bundles on algebraic curves. These invariants were defined by Joyce, and encode rich information about the moduli space of semistable vector bundles, such as its volume and intersection numbers, which were computed by Witten, Jeffrey and Kirwan in previous work. I will define a notion of regularization of divergent infinite sums, and I will express the invariants explicitly as such a divergent sum in a vertex algebra.

Mon, 31 Oct 2022
14:15
L5

Closed Ricci Flows with Singularities Modeled on Asymptotically Conical Shrinkers

Max Stolarski
(University of Warwick)
Abstract

Shrinking Ricci solitons are Ricci flow solutions that self-similarly shrink under the flow. Their significance comes from the fact that finite-time Ricci flow singularities are typically modeled on gradient shrinking Ricci solitons. Here, we shall address a certain converse question, namely, “Given a complete, noncompact gradient shrinking Ricci soliton, does there exist a Ricci flow on a closed manifold that forms a finite-time singularity modeled on the given soliton?” We’ll discuss work that shows the answer is yes when the soliton is asymptotically conical. No symmetry or Kahler assumption is required, and so the proof involves an analysis of the Ricci flow as a nonlinear degenerate parabolic PDE system in its full complexity. We’ll also discuss applications to the (non-)uniqueness of weak Ricci flows through singularities.

Mon, 24 Oct 2022
14:15
L5

Hitchin representations and minimal surfaces in symmetric spaces

Nathaniel Sagman
(University of Luxembourg)
Abstract

Labourie proved that every Hitchin representation into PSL(n,R) gives rise to an equivariant minimal surface in the corresponding symmetric space. He conjectured that uniqueness holds as well (this was known for n=2,3), and explained that if true, then the Hitchin component admits a mapping class group equivariant parametrization as a holomorphic vector bundle over Teichmüller space.

In this talk, we will define Hitchin representations, Higgs bundles, and minimal surfaces, and give the background for the Labourie conjecture. We will then explain that the conjecture fails for n at least 4, and point to some future questions and conjectures.

Mon, 17 Oct 2022
14:15
L5

On the inverse problem for isometry groups of norms

Emmanuel Breuillard
((Oxford University))
Abstract

We study the problem of determining when a compact group can be realized as the group of isometries of a norm on a finite dimensional real vector space.  This problem turns out to be difficult to solve in full generality, but we manage to understand the connected groups that arise as connected components of isometry groups. The classification we obtain is related to transitive actions on spheres (Borel, Montgomery-Samelson) on the one hand and to prehomogeneous spaces (Vinberg, Sato-Kimura) on the other. (joint work with Martin Liebeck, Assaf Naor and Aluna Rizzoli)

Mon, 10 Oct 2022
14:15
L5

Quantitative estimates for almost harmonic maps

Melanie Rupflin
(Oxford University)
Abstract

For geometric variational problems one often only has weak, rather than strong, compactness results and hence has to deal with the problem that sequences of (almost) critical points $u_j$ can converge to a limiting object with different topology.

A major challenge posed by such singular behaviour is that the seminal results of Simon on Lojasiewicz inequalities, which are one of the most powerful tools in the analysis of the energy spectrum of analytic energies and the corresponding gradient flows, are not applicable.

In this talk we present a method that allows us to prove Lojasiewicz inequalities in the singular setting of almost harmonic maps that converge to a simple bubble tree and explain how these results allow us to draw new conclusions about the energy spectrum of harmonic maps and the convergence of harmonic map flow for low energy maps from surfaces of positive genus into general analytic manifolds.

Tue, 14 Jun 2022
15:30
Virtual

Co-associative fibrations of $G_{2}$ manifolds: foundations and speculations.

Simon Donaldson
(Imperial College London and SCGP)
Further Information

The talk will be online (Zoom). People who would like to attend the seminar can also meet in person in L3.

Abstract

The introduction to the talk will review basics of $G_{2}$ geometry in seven dimensions, and associative and co-associative submanifolds. In one part of the talk we will explain how fibrations with co-associative fibres, near the “adiabatic limit” when the fibres are very small,  give insights into various questions about moduli spaces of $G_{2}$ structures and singularity formation. This part is mostly speculative. In the other part of the talk we discuss some analysis questions which enter when setting up the foundations of this adiabatic theory. These can be seen as codimension 2 analogues of free boundary problems and related questions have arisen in a number of areas of differential geometry recently.

Mon, 13 Jun 2022
14:15
L5

Open FJRW theory

Mark Gross
(Cambridge)
Abstract

I will describe joint work with Tyler Kelly and Ran Tessler. FJRW (Fan-Jarvis-Ruan-Witten) theory is an enumerative theory of quasi-homogeneous singularities, or alternatively, of Landau-Ginzburg models. It associates to a potential W:C^n -> C given by a quasi-homogeneous polynomial moduli spaces of (orbi-)curves of some genus and marked points along with some extra structure, and these moduli spaces carry virtual fundamental classes as constructed by Fan-Jarvis-Ruan. Here we specialize to the case W=x^r+y^s and construct an analogous enumerative theory for disks. We show that these open invariants provide perturbations of the potential W in such a way that mirror symmetry becomes manifest. Further, these invariants are dependent on certain choices of boundary conditions, but satisfy a beautiful wall-crossing formalism.

Mon, 06 Jun 2022
14:15
L5

Symplectic cohomology of compound Du Val singularities

Jonny Evans
(University of Lancaster)
Abstract

(Joint with Y. Lekili) If someone gives you a variety with a singular point, you can try and get some understanding of what the singularity looks like by taking its “link”, that is you take the boundary of a neighbourhood of the singular point. For example, the link of the complex plane curve with a cusp $y^2 = x^3$ is a trefoil knot in the 3-sphere. I want to talk about the links of a class of 3-fold singularities which come up in Mori theory: the compound Du Val (cDV) singularities. These links are 5-dimensional manifolds. It turns out that many cDV singularities have the same 5-manifold as their link, and to tell them apart you need to keep track of some extra structure (a contact structure). We use symplectic cohomology to distinguish the contact structures on many of these links.

Mon, 30 May 2022
14:15
L5

Drinfeld's conjecture and generalisations

Ana Peón-Nieto
(University of Birmingham)
Abstract

The so called Drinfeld conjecture states that the complement to very stable bundles has pure codimension one in the moduli space of vector bundles. In this talk I will explain a constructive proof in rank three, and discuss if/how it generalises to wobbly fixed points of the nilpotent cone as defined by Hausel and Hitchin. This is joint work with Pauly (Nice).

Mon, 23 May 2022
14:15
L5

Ancient solutions and translators in Lagrangian mean curvature flow

Felix Schulze
(University of Warwick)
Abstract

For almost calibrated Lagrangian mean curvature flow it is known that all singularities are of Type II. To understand the finer structure of the singularities forming, it is thus necessary to understand the structure of general ancient solutions arising as potential limit flows at such singularities. We will discuss recent progress showing that ancient solutions with a blow-down a pair of static planes meeting along a 1-dimensional line are translators. This is joint work with J. Lotay and G. Szekelyhidi.

Mon, 16 May 2022
14:15
L5

Morava K-theory and Hamiltonian loops

Ivan Smith
(Cambridge)
Abstract

A loop of Hamiltonian diffeomorphisms of a symplectic manifold $X$ defines, by clutching, a symplectic fibration over the two-sphere with fibre $X$.  We prove that the integral cohomology of the total space splits additively, answering a question of McDuff, and extending the rational cohomology analogue proved by Lalonde-McDuff-Polterovich in the late 1990’s. The proof uses a virtual fundamental class of moduli spaces of sections of the fibration in Morava K-theory. This talk reports on joint work with Mohammed Abouzaid and Mark McLean.

Mon, 09 May 2022
14:15
L5

Conformally Invariant Energies of Curves and Surfaces

Alexis Michelat
(Oxford University)
Abstract

The integral of mean curvature squared is a conformal invariant of surfaces reintroduced by Willmore in 1965 whose study exercised a tremendous influence on geometric analysis and most notably on minimal surfaces in the last years.


On the other hand, the Loewner energy is a conformal invariant of planar curves introduced by Yilin Wang in 2015 which is notably linked to SLE processes and the Weil-Petersson class of (universal) Teichmüller theory.


In this presentation, after a brief historical introduction, we will discuss some recent developments linking the Willmore energy to the Loewner energy and mention several open problems.


Joint work with Yilin Wang (MIT/MSRI)

Mon, 02 May 2022
14:15
L5

Hypersurfaces with prescribed-mean-curvature: existence and properties

Costante Bellettini
(University College London)
Abstract

Let $N$ be a compact Riemannian manifold of dimension 3 or higher, and $g$ a Lipschitz non-negative (or non-positive) function on $N$. In joint works with Neshan Wickramasekera we prove that there exists a closed hypersurface $M$ whose mean curvature attains the values prescribed by $g$. Except possibly for a small singular set (of codimension 7 or higher), the hypersurface $M$ is $C^2$ immersed and two-sided (it admits a global unit normal); the scalar mean curvature at $x$ is $g(x)$ with respect to a global choice of unit normal. More precisely, the immersion is a quasi-embedding, namely the only non-embedded points are caused by tangential self-intersections: around such a non-embedded point, the local structure is given by two disks, lying on one side of each other, and intersecting tangentially (as in the case of two spherical caps touching at a point). A special case of PMC (prescribed-mean-curvature) hypersurfaces is obtained when $g$ is a constant, in which the above result gives a CMC (constant-mean-curvature) hypersurface for any prescribed value of the mean curvature.

Mon, 25 Apr 2022
14:15
L5

Ricci flows with nonstandard initial data

Peter Topping
(University of Warwick)
Abstract

Most Ricci flow theory takes the short-time existence of solutions as a starting point and ends up concerned with understanding the long-time limiting behaviour and the structure of any finite-time singularities that may develop along the way. In this talk I will look at what you can think of as singularities at time zero. I will describe some of the situations in which one would like to start a  Ricci flow with a space that is rougher than a smooth bounded curvature Riemannian manifold, and some of the situations in which one considers smooth initial data that is only achieved in a non-smooth way. A particularly interesting and useful case is the problem of starting a Ricci flow on a Riemann surface equipped with a measure. I will not be assuming expertise in Ricci flow theory. Parts of the talk are joint with either Hao Yin (USTC) or ManChun Lee (CUHK).

Mon, 07 Mar 2022
14:15
L5

Brakke Regularity for the Allen--Cahn Flow

Huy The Nguyen
(Queen Mary University, London)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

In this talk we prove an analogue of the Brakke's $\epsilon$-regularity theorem for the parabolic Allen--Cahn equation. In particular, we show uniform $C^{2,\alpha}$ regularity for the transition layers converging to smooth mean curvature flows as $\epsilon\rightarrow 0$. A corresponding gap theorem for entire eternal solutions of the parabolic Allen--Cahn is also obtained. As an application of the regularity theorem, we give an affirmative answer to a question of Ilmanen that there is no cancellation in BV convergence in the mean convex setting.

Mon, 28 Feb 2022
14:15
L5

Chow quotients and geometric invariant theoretic quotients for group actions on complex projective varieties

Frances Kirwan
(University of Oxford)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

When a reductive group G acts on a complex projective variety
X, there exist different methods for finding an open G-invariant subset
of X with a geometric quotient (the 'stable locus'), which is a
quasi-projective variety and has a projective completion X//G. Mumford's
geometric invariant theory (GIT) developed in the 1960s provides one way
to do this, given a lift of the action to an ample line bundle on X,
though with no guarantee that the stable locus is not empty. An
alternative approach due to Kapranov and others in the 1990s is to use
Chow varieties to define a 'Chow quotient' X//G. The aim of this talk is
to review the relationship between these constructions for reductive
groups, and to discuss the situation when G is not reductive.

Mon, 21 Feb 2022
14:15
L5

Anti-self-dual instantons and codimension-1 collapse

Lorenzo Foscolo
(University College London)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

We study the behaviour of anti-self-dual instantons on $\mathbb{R}^3 \times S^1$ (also known as calorons) under codimension-1 collapse, i.e. when the circle factor shrinks to zero length. In this limit, the instanton equation reduces to the well-known Bogomolny equation of magnetic monopoles on $\mathbb{R}^3 $. However, inspired by work of Kraan and van Baal in the mathematical physics literature, we show how $SU(2)$ instantons can be realised as superpositions of monopoles and "rotated monopoles" glued into a singular background abelian configuration consisting of Dirac monopoles of positive and negative charges. I will also discuss generalisations of the construction to calorons with arbitrary structure group and potential applications to the hyperkähler geometry of moduli spaces of calorons. This is joint work with Calum Ross.

Mon, 14 Feb 2022
14:15
L5

Quiver varieties and moduli spaces attached to Kleinian singularities

Søren Gammelgaard
(University of Oxford)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

Let $\Gamma$ be a finite subgroup of $SL(2, \mathbb{C})$. We can attach several different moduli spaces to the action of $\Gamma$ on $\mathbb{C}^2$, and we show how Nakajima's quiver varieties provide constructions of them. The definition of such a quiver variety depends on a stability parameter, and we are especially interested in what happens when this parameter moves into a specific ray in its associated wall-and-chamber structure. Some of the resulting quiver varieties can be understood as moduli spaces of certain framed sheaves on an appropriate stacky compactification of the Kleinian singularity $\mathbb{C}^2/\Gamma$. As a special case, this includes the punctual Hilbert schemes of $\mathbb{C}^2/\Gamma$.

Much of this is joint work with A. Craw, Á. Gyenge, and B. Szendrői.

Mon, 07 Feb 2022
14:15
L5

Nonabelian Hodge theory and the decomposition theorem for 2-CY categories

Ben Davison
(Edinburgh)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

Examples of 2CY categories include the category of coherent sheaves on a K3 surface, the category of Higgs bundles, and the category of modules over preprojective algebras or fundamental group algebras of compact Riemann surfaces.  Let p:M->N be the morphism from the stack of semistable objects in a 2CY category to the coarse moduli space.  I'll explain, using cohomological DT theory, formality in 2CY categories, and structure theorems for good moduli stacks, how to prove a version of the BBDG decomposition theorem for the exceptional direct image of the constant sheaf along p, even though none of the usual conditions for the decomposition theorem apply: p isn't projective or representable, M isn't smooth, the constant mixed Hodge module complex Q_M isn't pure...  As an application, I'll explain how this allows us to extend nonabelian Hodge theory to Betti/Dolbeault stacks.

Mon, 31 Jan 2022
14:15
Virtual

D-critical locus structure for local toric Calabi-Yau 3-folds

Yun Shi
(Harvard University)
Abstract

Donaldson-Thomas (DT) theory is an enumerative theory which produces a virtual count of stable coherent sheaves on a Calabi-Yau 3-fold. Motivic Donaldson-Thomas theory, originally introduced by Kontsevich-Soibelman, is a categorification of the DT theory. This categorification contains more refined information of the moduli space. In this talk, I will explain the role of d-critical locus structure in the definition of motivic DT invariant, following the definition by Bussi-Joyce-Meinhardt. I will also discuss results on this structure on the Hilbert schemes of zero dimensional subschemes on local toric Calabi-Yau threefolds. This is based on joint works with Sheldon Katz. The results have substantial overlap with recent work by Ricolfi-Savvas, but techniques used here are different. 

Mon, 24 Jan 2022
14:15
Virtual

Cayley fibrations in the Bryant-Salamon manifolds

Federico Trinca
(University of Oxford)
Abstract

In 1989, Bryant and Salamon constructed the first Riemannian manifolds with holonomy group $\Spin(7)$. Since a crucial aspect in the study of manifolds with exceptional holonomy regards fibrations through calibrated submanifolds, it is natural to consider such objects on the Bryant-Salamon manifolds.

In this talk, I will describe the construction and the geometry of (possibly singular) Cayley fibrations on each Bryant-Salamon manifold. These will arise from a natural family of structure-preserving $\SU(2)$ actions. The fibres will provide new examples of Cayley submanifolds.

Tue, 18 Jan 2022
15:30
Virtual

TBA

Stephan Stadler
(Max Planck Institute Bonn)
Abstract

TBA