### Stability, WAP, and Roelcke-precompact Polish groups

## Abstract

In joint work with T. Tsankov we study a (yet other) point at which model theory and dynamics intersect. On the one hand, a (metric) aleph_0-categorical structure is determined, up to bi-interpretability, by its automorphism group, while on the other hand, such automorphism groups are exactly the Roelcke precompact ones. One can further identify formulae on the one hand with Roelcke-continuous functions on the other hand, and similarly stable formulae with WAP functions, providing an easy tool for proving that a group is Roelcke precompact and for calculating its Roelcke/WAP compactification. Model-theoretic techniques, transposed in this manner into the topological realm, allow one to prove further that if R(G) = W(G); then G is totally minimal.