Past Mathematical Biology and Ecology Seminar

27 November 2020
14:00
Abstract

The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape. Since shape in an organism is often thought to be closely related to its function, it suggests that these unusual shapes must have some functional benefit to the plant. We 
propose that the creation of these complex shapes is an effective strategy to reduce mechanical stress in the cell wall. Although the 
formation of these shapes requires highly anisotropic and non-uniform growth at the sub-cellular level, it appears to be triggered by 
isotropic growth at the organ level. Analysis of cell shape over multiple species is consistent with the idea that the puzzle is in 
response to a developmental constraint, and that the mechanism is like to be conserved among higher plants.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
20 November 2020
14:00
Professor Aleksandr Sahakyan
Abstract

 “In this talk, I shall present the past research track passing through quantum mechanical studies of small molecules to biomolecules, to proteome-wide big data analyses and computational genomics. Next, the ongoing research in our group will be presented that builds upon the expertise on different levels of information processing in life (genome, transcriptome, proteins, small molecules), to develop self-consistent “first principles” models in biology with a wide spectrum of usage. The immediate benefits and the targeted processes will be described covering different layers of the central dogma of biology, multigenic diseases and disease driver/passenger mutation predictions."

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
13 November 2020
14:00
Professor Heather Harrington
Abstract

Signalling pathways can be modelled as a biochemical reaction network. When the kinetics are to follow mass-action kinetics, the resulting
mathematical model is a polynomial dynamical system. I will overview approaches to analyse these models with steady-state data using
computational algebraic geometry and statistics. Then I will present how to analyse such models with time-course data using differential
algebra and geometry for model identifiability. Finally, I will present how topological data analysis can be help distinguish models
and data.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
6 November 2020
14:00
Abstract

While the pathological mechanisms in COVID-19 illness are still poorly understood, it is increasingly clear that high levels of pro-inflammatory mediators play a major role in clinical deterioration in patients with severe disease. Current evidence points to a hyperinflammatory state as the driver of respiratory compromise in severe COVID-19 disease, with a clinical trajectory resembling acute respiratory distress syndrome (ARDS) but how this “runaway train” inflammatory response emergences and is maintained is not known. In this talk, we present the first mathematical model of lung hyperinflammation due to SARS- CoV-2 infection. This model is based on a network of purported mechanistic and physiological pathways linking together five distinct biochemical species involved in the inflammatory response. Simulations of our model give rise to distinct qualitative classes of COVID-19 patients: (i) individuals who naturally clear the virus, (ii) asymptomatic carriers and (iii–v) individuals who develop a case of mild, moderate, or severe illness. These findings, supported by a comprehensive sensitivity analysis, points to potential therapeutic interventions to prevent the emergence of hyperinflammation. Specifically, we suggest that early intervention with a locally-acting anti-inflammatory agent (such as inhaled corticosteroids) may effectively blockade the pathological hyperinflammatory reaction as it emerges.

 

 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
30 October 2020
14:00
Abstract

Influenza viruses infect millions of individuals each year and cause a significant amount of morbidity and mortality. Understanding how the virus spreads within the lung, how efficacious host immune control is, and how each influences acute lung injury and disease severity is critical to combat the infection. We used an integrative model-experiment exchange to establish the dynamical connections between viral loads, infected cells, CD8+ T cells, lung injury, and disease severity. Our model predicts that infection resolution is sensitive to CD8+ T cell expansion, that there is a critical T cell magnitude needed for efficient resolution, and that the rate of T cell-mediated clearance is dependent on infected cell density. 
We validated the model through a series of experiments, including CD8 depletion and whole lung histomorphometry. This showed that the infected area of the lung matches the model-predicted infected cell dynamics, and that the resolved area of the lung parallels the relative CD8 dynamics. Additional analysis revealed a nonlinear relation between disease severity, inflammation, and lung injury. These novel links between important host-pathogen kinetics and pathology enhance our ability to forecast disease progression.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
23 October 2020
14:00
Abstract

Multi-modal data sets are growing rapidly in single cell genomics, as well as other fields in science and engineering. We introduce MultiMAP, an approach for dimensionality reduction and integration of multiple datasets. MultiMAP embeds multiple datasets into a shared space so as to preserve both the manifold structure of each dataset independently, in addition to the manifold structure in shared feature spaces. MultiMAP is based on the rich mathematical foundation of UMAP, generalizing it to the setting of more than one data manifold. MultiMAP can be used for visualization of multiple datasets as well as an integration approach that enables subsequent joint analyses. Compared to other integration for single cell data, MultiMAP is not restricted to a linear transformation, is extremely fast, and is able to leverage features that may not be present in all datasets. We apply MultiMAP to the integration of a variety of single-cell transcriptomics, chromatin accessibility, methylation, and spatial data, and show that it outperforms current approaches in run time, label transfer, and label consistency. On a newly generated single cell ATAC-seq and RNA-seq dataset of the human thymus, we use MultiMAP to integrate cells across pseudotime. This enables the study of chromatin accessibility and TF binding over the course of T cell differentiation.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
16 October 2020
14:00
Abstract

 Inherent fluctuations may play an important role in biological and chemical systems when the copy number of some chemical species is small. This talk will present the recent work on the stochastic modeling of reaction-diffusion processes in biochemical systems. First, I will introduce several stochastic models, which describe system features at different scales of interest. Then, model reduction and coarse-graining methods will be discussed to reduce model complexity. Next, I will show multiscale algorithms for stochastic simulation of reaction-diffusion processes that couple different modeling schemes for better efficiency of the simulation. The algorithms apply to the systems whose domain is partitioned into two regions with a few molecules and a large number of molecules.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
19 June 2020
14:00
Abstract

Femoral neck response to physiological loading during level walking can be better understood, if personalized muscle and bone anatomy is considered. Finite element (FE) models of in vivo cadaveric bones combined with gait data from body-matched volunteers were used in the earlier studies, which could introduce errors in the results. The aim of the current study is to report the first fully personalized multiscale model to investigate the strains predicted at the femoral neck during a full gait cycle. CT-based Finite element models (CT/FE) of the right femur were developed following a validated framework. Muscle forces estimated by the musculoskeletal model were applied to the CT/FE model. For most of the cases, two overall peaks were predicted around 15% and 50% of the gait. Maximum strains were predicted at the superior neck region in the model. Anatomical muscle variations seem to affect femur response leading to considerable variations among individuals, both in term of the strains level and the trend at the femoral neck.
 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
12 June 2020
14:00
Dr Berta Verd
Abstract

Pattern formation emerges during development from the interplay between gene regulatory networks (GRNs) acting at the single cell level and cell movements driving tissue level morphogenetic changes. As a result, the timing of cell specification and the dynamics of morphogenesis must be tightly cross-regulated. In the developing zebrafish, mesoderm progenitors will spend varying amounts of time (from 5 to 10hrs) in the tailbud before entering the pre-somitic mesoderm (PSM) and initiating a stereotypical transcriptional trajectory towards a mesodermal fate. In contrast, when dissociated and placed in vitro, these progenitors differentiate synchronously in around 5 hours. We have used a data-driven mathematical modelling approach to reverse-engineer a GRN that is able to tune the timing of mesodermal differentiation as progenitors leave the tailbud’s signalling environment, which also explains our in vitro observations. This GRN recapitulates pattern formation at the tissue level when modelled on cell tracks obtained from live-imaging a developing PSM. Our “live-modelling” framework also allows us to simulate how perturbations to the GRN affect the emergence of pattern in zebrafish mutants. We are now extending this analysis to cichlid fishes in order to explore the regulation of developmental time in evolution.

 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
5 June 2020
14:00
Professor Alan Garfinkel
Abstract

There is a need for a new kind of maths course, to be taught, not to mathematics students, but to biologists with little or no maths background. There have been many recent calls for an upgrade to the mathematical background of biologists: undergraduate biology students need to understand the role of modeling and dynamics in understanding ecological systems, evolutionary dynamics, neuroscience, physiology, epidemiology, and the modeling that underlies the concept of climate change. They also need to understand the importance of feedback, both positive and negative, in creating dynamical systems in biology.

 Such a course is possible. The most important foundational development was the 20th century replacement of the vague and unhelpful concept of a differential equation by the rigorous geometric concept of a vector field, a function from a multidimensional state space to its tangent space, assigning “change vectors” to every point in state space. This twentieth-century concept is not just more rigorous, but in fact makes for superior pedagogy. We also discuss the key nonlinear behaviors that biological systems display, such as switch-like behavior, robust oscillations and even chaotic behavior.

 This talk will outline such a course. It would have a significant effect on the conduct of biological research and teaching, and bring the usefulness of mathematical modeling to a wide audience.

 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar

Pages