Past Mathematical Biology and Ecology Seminar

5 March 2021
14:00
Abstract

We propose a mathematical model that unifies the psychiatric concepts of drug-induced incentive salience (IST), reward prediction error

(RPE) and opponent process theory (OPT) to describe the emergence of addiction within substance abuse. The biphasic reward response (initially

positive, then negative) of the OPT is activated by a drug-induced dopamine release, and evolves according to neuro-adaptative brain

processes.  Successive drug intakes enhance the negative component of the reward response, which the user compensates for by increasing the

drug dose.  Further neuroadaptive processes ensue, creating a positive feedback between physiological changes and user-controlled drug

intake. Our drug response model can give rise to qualitatively different pathways for an initially naive user to become fully addicted.  The

path to addiction is represented by trajectories in parameter space that depend on the RPE, drug intake, and neuroadaptive changes.

We will discuss how our model can be used to guide detoxification protocols using auxiliary substances such as methadone, to mitigate withdrawal symptoms.

If this is useful here are my co-authors:
Davide Maestrini, Tom Chou, Maria R. D'Orsogna

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
19 February 2021
14:00
Abstract

The talk will discuss the use of mathematical models for understanding targeted cancer therapies. One area of focus is the treatment of chronic lymphocytic leukemia with tyrosine kinase inhibitors. I will explore how mathematical approaches have helped elucidate the mechanism of action of the targeted drug ibrutinib, and will discuss how evolutionary models, based on patient-specific parameters, can make individualized predictions about treatment outcomes. Another focus of the talk is the use of oncolytic viruses to kill cancer cells and drive cancers into remission. These are viruses that specifically infect cancer cells and spread throughout tumors. I will discuss mathematical models applied to experimental data that analyze virus spread in a spatially structured setting, concentrating on the interactions of the virus with innate immune mechanisms that determine the outcome of virus spread.  

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
12 February 2021
14:00
Abstract

Human life expectancy has been increasing steadily over the last century but this has resulted in an increasing incidence of age-related chronic diseases. Over 60% of people over the age of 65 will suffer from more than one disease at the same time (multimorbidity) and 25-50% of those over 80 years old develop frailty, defined as an accumulation of deficits and loss of reserve. Multimorbidity and frailty have complex medical needs and are strongly associated with disability and hospitalization. However, current treatments are suboptimal with problems of polypharmacy due to the fact that each disease is treated individually. Geroprotectors target fundamental mechanisms of ageing common to multiple age-related diseases and shows promise in delaying the onset of multimorbidity and frailty in animal models. However, their clinical testing in patients has been challenging due to the high level of complexity in the mode of action of geroprotectors and in the way multimorbidity and frailty develop.

 The talk will give an overview of these problems and make the case for the use of AI approaches to solve some of those complex issues with a view of designing appropriate clinical trials with geroprotectors to prevent age-related multimorbidity and frailty and extend healthspan.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
5 February 2021
14:00
Professor Alexander Anderson
Abstract

Our current approach to cancer treatment has been largely driven by finding molecular targets, those patients fortunate enough to have a targetable mutation will receive a fixed treatment schedule designed to deliver the maximum tolerated dose (MTD). These therapies generally achieve impressive short-term responses, that unfortunately give way to treatment resistance and tumor relapse. The importance of evolution during both tumor progression, metastasis and treatment response is becoming more widely accepted. However, MTD treatment strategies continue to dominate the precision oncology landscape and ignore the fact that treatments drive the evolution of resistance. Here we present an integrated theoretical, experimental and clinical approach to develop treatment strategies that specifically embrace cancer evolution. We will consider the importance of using treatment response as a critical driver of subsequent treatment decisions, rather than fixed strategies that ignore it. Through the integrated application of drug treatments and drug holidays we will illustrate that, evolutionary therapy can drive either tumor control or extinction. Our results strongly indicate that the future of precision medicine shouldn’t be in the development of new drugs but rather in the smarter evolutionary application of preexisting ones.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
29 January 2021
14:00
Abstract

Bacteria use intercellular signalling, or quorum sensing (QS), to share information and respond collectively to aspects of their surroundings. The autoinducers that carry this information are exposed to the external environment. Consequently, they are affected by factors such as removal through fluid flow, a ubiquitous feature of bacterial habitats ranging from the gut and lungs to lakes and oceans.

We develop and apply a general theory that identifies and quantifies the conditions required for QS activation in fluid flow by systematically linking cell- and population-level genetic and physical processes. We predict that cell-level positive feedback promotes a robust collective response, and can act as a low-pass filter at the population level in oscillatory flow, responding only to changes over slow enough timescales. Moreover, we use our model to hypothesize how bacterial populations can discern between increases in cell density and decreases in flow rate.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
22 January 2021
14:00
Abstract

A major challenge in the study of biological systems is that of model discovery: turning data into reduced order models that are not just predictive, but provide insight into the nature of the underlying system that generated the data. We introduce a number of data-driven strategies for discovering nonlinear multiscale dynamical systems and their embeddings from data.  Such data-driven methods can be used in the biological sciences where rich data streams are affording new possibilities for the understanding and characterization of complex, networked systems.  In neuroscience, for instance, the integration of these various concepts (reduced-order modeling, equation-free, machine learning, sparsity, networks, multi-scale physics and adaptive control) are critical to formulating successful modeling strategies that perhaps can say something meaningful about experiments.   These methods will be demonstrated on a number of neural systems.  I will also highlight how such methods can be used to quantify cognitive and decision-making deficits arising from neurodegenerative diseases and/or traumatic brain injuries (concussions).

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
4 December 2020
14:00
Abstract

Genotype-phenotype associations can be results of direct effects, genetic nurturing effects and population stratification confounding (The nature of nurture: Effects of parental genotypes, Science, 2018, Deconstructing the sources of genotype-phenotype associations in humans, Science, 2019). Genotypes from parents and siblings of the proband can be used to statistically disentangle these effects. To maximize power, a comprehensive framework for utilizing various combinations of parents’ and siblings’ genotypes is introduced. Central to the approach is mendelian imputation, a method that utilizes identity by descent (IBD) information to non-linearly impute genotypes into untyped relatives using genotypes of typed individuals. Applying the method to UK Biobank probands with at least one parent or sibling genotyped, for an educational attainment (EA) polygenic score that has a R2 of 5.7% with EA, its predictive power based on direct genetic effect alone is demonstrated to be only about 1.4%. For women, the EA polygenic score has a bigger estimated direct effect on age-at-first-birth than EA itself.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
27 November 2020
14:00
Abstract

The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape. Since shape in an organism is often thought to be closely related to its function, it suggests that these unusual shapes must have some functional benefit to the plant. We 
propose that the creation of these complex shapes is an effective strategy to reduce mechanical stress in the cell wall. Although the 
formation of these shapes requires highly anisotropic and non-uniform growth at the sub-cellular level, it appears to be triggered by 
isotropic growth at the organ level. Analysis of cell shape over multiple species is consistent with the idea that the puzzle is in 
response to a developmental constraint, and that the mechanism is like to be conserved among higher plants.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar
20 November 2020
14:00
Professor Aleksandr Sahakyan
Abstract

 “In this talk, I shall present the past research track passing through quantum mechanical studies of small molecules to biomolecules, to proteome-wide big data analyses and computational genomics. Next, the ongoing research in our group will be presented that builds upon the expertise on different levels of information processing in life (genome, transcriptome, proteins, small molecules), to develop self-consistent “first principles” models in biology with a wide spectrum of usage. The immediate benefits and the targeted processes will be described covering different layers of the central dogma of biology, multigenic diseases and disease driver/passenger mutation predictions."

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Mathematical Biology and Ecology Seminar

Pages