15:45
Forthcoming events in this series
15:45
14:15
15:45
Overshoots and undershoots of Levy processes
Abstract
We obtain a new identity giving a quintuple law of overshoot, time of
overshoot, undershoot, last maximum, and time of last maximum of a general Levy
process at ?rst passage. The identity is a simple product of the jump measure
and its ascending and descending bivariate renewal measures. With the help of
this identity, we consider applications for passage problems of stable
processes, recovering and extending results of V. Vigon on the bivariate jump
measure of the ascending ladder process of a general Levy process and present
some new results for asymptotic overshoot distributions for Levy processes with
regularly varying jump measures.
(Parts of this talk are based on joint work with Ron Doney and Claudia
Kluppelberg)
14:15
Invariance principles for multitype Galton-Watson trees and random planar maps (Joint work with J.-F. Marckert, Universite de Ve
Abstract
In recent years, the use of random planar maps as discretized random surfaces has received a considerable attention in the physicists community. It is believed that the large-scale properties, or the scaling limit of these objects should not depend on the local properties of these maps, a phenomenon called universality.
By using a bijection due to Bouttier-di Francesco-Guitter between certain classes of planar maps and certain decorated trees, we give instances of such universality
phenomenons when the random maps follow a Boltzmann distribution where each face with degree $2i$ receives a nonnegative weight $q(i)$. For example, we show that under
certain regularity hypothesis for the weight sequence, the radius of the random map conditioned to have $n$ faces scales as $n^{1/4}$, as predicted by physicists and shown in the case of quadrangulations by Chassaing and Schaeffer. Our main tool is a new invariance principle for multitype Galton-Watson trees and discrete snakes.
15:45
Ageing in trap models, convergence to arc-sine law
Abstract
The aging of spin-glasses has been of much interest in the last decades. Since its explanation in the context of real spin-glass models is out of reach, several effective models were proposed in physics literature. In my talk I will present how aging can be rigorously proved in so called trap models and what is the mechanism leading to it. In particular I will concentrate on conditions leading to the fact that one of usual observables used in trap models converges to arc-sine law for Levy processes.
14:15
Ballistic Random walks in random environment
Abstract
Random Walks in Dirichlet Environment play a special role among random walks in random environments since the annealed law corresponds to the law of an edge oriented reinforced random walks. We will give few results concerning the ballistic behaviour of these walks and some properties of the asymptotic velocity. We will also compare the behaviour of these walks with general random walks in random environments in the limit of small disorder
15:45
Convergence of stochastic differential equations in the rough path sense
Abstract
We show that the solutions of stochastic differential equations converge in
the rough path metric as the coefficients of these equations converge in a
suitable lipschitz norm. We then use this fact to obtain results about
differential equations driven by the Brownian rough path.
14:15
Random walks on critical percolation clusters
Abstract
It is now known that the overall behaviour of a simple random walk (SRW) on
supercritical (p>p_c) percolation cluster in Z^d is similiar to that of the SRW
in Z^d. The critical case (p=p_c) is much harder, and one needs to define the
'incipient infinite cluster' (IIC). Alexander and Orbach conjectured in 1982
that the return probability for the SRW on the IIC after n steps decays like
n^{2/3} in any dimension. The easiest case is that of trees; this was studied by
Kesten in 1986, but we can now revisit this problem with new techniques.
15:45
Large deviations for the Yang-Mills measure
Abstract
The Yang-Mills energy is a non-negative functional on the space of connections on a principal bundle over a Riemannian manifold. At a heuristical level, this energy determines a Gibbs measure which is called the Yang-Mills measure. When the manifold is a surface, a stochastic process can be constructed - at least in two different ways - which is a sensible candidate for the random holonomy of a connection distributed according to the Yang-Mills measure. This process is constructed by using some specifications given by physicists of its distribution, namely some of its finite-dimensional marginals, which of course physicists have derived from the Yang-Mills energy, but by non-rigorous arguments. Without assuming any familiarity with this stochastic process, I will present a large deviations result which is the first rigorous link between the Yang-Mills energy and the Yang-Mills measure.
14:15
15:45
Heat kernel estimates for a resistance form under non-uniform volume growth.
Abstract
The estimation of heat kernels has been of much interest in various settings. Often, the spaces considered have some kind of uniformity in the volume growth. Recent results have shown that this is not the case for certain random fractal sets. I will present heat kernel bounds for spaces admitting a suitable resistance form, when the volume growth is not uniform, which are motivated by these examples.
14:15
Diploid branching particle model under rapid stirring
Abstract
We study diploid branching particle models and its behaviour when rapid
stirring, i.e. rapid exchange of particles between neighbouring spatial
sites, is added to the interaction. The particle models differ from the
``usual'' models in that they all involve two types of particles, male
and female, and branching can only occur when both types of particles
are present. We establish the existence of nontrivial stationary
distributions for various models when birth rates are sufficiently large.
15:45
Stochastic calculus via regularization, generalized Dirichlet processes and applications
Abstract
We aim at presenting some aspects of stochastic calculus via regularization
in relation with integrator processes which are generally not semimartingales.
Significant examples of those processes are Dirichlet processes, Lyons-Zheng
processes and fractional (resp. bifractional) Brownian motion. A Dirichlet
process X is the sum of a local martingale M and a zero quadratic variation
process A. We will put the emphasis on a generalization of Dirichlet processes.
A weak Dirichlet process is the sum of local martingale M and a process A such
that [A,N] = 0 where N is any martingale with respect to an underlying
filtration. Obviously a Dirichlet process is a weak Dirichlet process. We will
illustrate partly the following application fields.
Analysis of stochastic integrals related to fluidodynamical models considered
for instance by A. Chorin, F. Flandoli and coauthors...
Stochastic differential equations with distributional drift and related
stochastic control theory.
The talk will partially cover joint works with M. Errami, F. Flandoli, F.
Gozzi, G. Trutnau.
14:15
Rough Path estimate for a smooth path (and Nonlinear Fourier transform) (Joint work with Prof. Lyons)
Abstract
I will show rough path estimates for smooth L^p functions whose derivatives are in L^q. The application part related to (linear or nonlinear) Fourier analysis will be also discussed.
15:45
Random walks in quasi-one-dimensional random environments
14:15
15:45
Perspectives on the mathematics of the integral of geometric Brownian motion
Abstract
This talk attempts to survey key aspects of the mathematics that has been developed in recent years towards an explicit understanding of the structure of exponential functionals of Brownian motion, starting with work of Yor's in the 1990s
14:15
Characterisation of paths by their signatures
Abstract
It is known that a continuous path of bounded variation
can be reconstructed from a sequence of its iterated integrals (called the signature) in a similar way to a function on the circle being reconstructed from its Fourier coefficients. We study the radius of convergence of the corresponding logarithmic signature for paths in an arbitrary Banach space. This convergence has important consequences for control theory (in particular, it can be used for computing the logarithm of a flow)and the efficiency of numerical approximations to solutions of SDEs. We also discuss the nonlinear structure of the space of logarithmic signatures and the problem of reconstructing a path by its signature.
15:45
Nonlinear Phenomena in Large Interacting Systems
14:15
15:45
Diffusions in random environment and ballistic behavior
Abstract
We introduce conditions in the spirit of $(T)$ and $(T')$ of the discrete setting, that imply, when $d \geq 2$, a law of large numbers with non-vanishing limiting velocity (which we refer to as 'ballistic behavior') and a central limit theorem with non-degenerate covariance matrix. As an application of our results, we consider the class of diffusions where the diffusion matrix is the identity, and give a concrete criterion on the drift term under which the diffusion in random environment exhibits ballistic behavior.
14:15
Modelling and simulation issues in computational cell biology
Abstract
/notices/events/abstracts/abstracts/stochastic-analysis/ht05/burrage.shtml
15:45
Joint work with Thomas Duquesne on Growth of Levy forests
Abstract
It is well-known that the only space-time scaling limits of Galton-Watson processes are continuous-state branching processes. Their genealogical structure is most explicitly expressed by discrete trees and R-trees, respectively. Weak limit theorems have been recently established for some of these random trees. We study here a Markovian forest growth procedure that allows to construct the genealogical forest of any continuous-state branching process with immigration as an a.s. limit of Galton-Watson forests with edge lengths. Furthermore, we are naturally led to continuous forests with edge lengths. Another strength of our method is that it yields results in the general supercritical case that was excluded in most of the previous literature.
14:15
Hydrodynamic Limits for Discrete Event Systems
Abstract
/notices/events/abstracts/stochastic-analysis/ht05/draief.shtml
15:45
Fractals and conformal invariance
Abstract
It became apparent during the last decade that in several questions in classical complex analysis extremal configurations are fractal, making them very difficult to attack: it is not even clear how to construct or describe extremal objects. We will argue that the most promising approach is to consider conformally self-similar random configurations, which should be extremal almost surely.
14:15
The genealogy of self-similar fragmentations with a negative index as a continuum random tree
Abstract
Fragmentation processes model the evolution of a particle that split as time goes on. When small particles split fast enough, the fragmentation is intensive and the initial mass is reduced to dust in finite time. We encode such fragmentation into a continuum random tree (CRT) in the sense of Aldous. When the splitting times are dense near 0, the fragmentation CRT is in turn encoded into a continuous (height) function. Under some mild hypotheses, we calculate the Hausdorff dimension of the CRT, as well as the maximal H
15:45
Long Range Exclusion Process
Abstract
Given a countable set of sites S an a transition matrix p(x,y) on that set, we consider a process of particles evolving on S according to the following rule: each particle waits an exponential time and then jumps following a Markov chain governed by p(x,y); the particle keeps jumping until it reaches an empty site where it remains for another exponential time. Unlike most interacting particle systems, this process fails to
have the Feller property. This causes several technical difficulties to study it. We present a method to prove that certain measures are invariant for the process and exploit the Kolmogorov zero or one law to study some of its unusual path properties.
14:15
Coagulation of Brownian particles
Abstract
According to the Stokes-Einstein law, microscopic particles subject to intense bombardment by (much smaller) gas molecules perform Brownian motion with a diffusivity inversely proportion to their radius. Smoluchowski, shortly after Einstein's account of Brownian motion, used this model to explain the behaviour of a cloud of such particles when, in addition their diffusive motion, they coagulate on collision. He wrote down a system of evolution equations for the densities of particles of each size, in particular identifying the collision rate as a function of particle size.
We give a rigorous derivation of (a spatially inhomogeneous generalization of) Smoluchowski's equations, as the limit of a sequence of Brownian particle systems with coagulation on collision. The equations are shown to have a unique, mass-preserving solution. A detailed limiting picture emerges describing the ancestral spatial tree of particles making up each particle in the current population. The limit is established at the level of these trees.
15:45
Dual coagulation and fragmentation and the genealogy of Yule processes
Abstract
We describe a nice example of duality between coagulation and fragmentation associated with certain Dirichlet distributions. The fragmentation and coalescence chains we derive arise naturally in the context of the genealogy of Yule processes.
14:15
Coexistence in Locally Regulated Competing Populations
Abstract
We propose two models of the evolution of a pair of competing populations. Both are lattice based. The first is a compromise between fully spatial models, which do not appear amenable to analytic results, and interacting particle system models, which don't, at present, incorporate all the competitive strategies that a population might adopt. The second is a simplification of the first in which competition is only supposed to act within lattice sites and the total population size within each lattice point is a constant. In a special case, this second model is dual to a branching-annihilating random walk. For each model, using a comparison with N-dependent oriented percolation, we show that for certain parameter values both populations will coexist for all time with positive probability.
As a corollary we deduce survival for all time of branching annihilating random walk for sufficiently large branching rates.
We also present conjectures relating to the role of space in the survival probabilities for the two populations.
15:45
Approximate McKean-Vlasov Representations for linear SPDEs
Abstract
/notices/abstracts/stochastic-analysis/ht04/crisan.shtml
14:15
Invariant measures of Markov diffusions and approximations
Abstract
Ergodic Markov processes possess invariant measures. In the case if transition probabilities or SDE coefficients depend on a parameter, it is important to know whether these measures depend regularly on this parameter. Results of this kind will be discussed. Another close topic is whether approximations to Markov diffusions possess ergodic properties similar to those of the limiting processes. Some partial answer to this question will be presented.
14:45
On the inviscid limit for randomly forced nonlinear PDE
Abstract
I shall talk on recent results on behaviour of solutions of
2D Navier-Stokes Equation (and some other related equations), perturbed by a random force, proportional to the square root of the viscosity. I shall discuss some properties of the solutions, uniform in the viscosity, as well as the inviscid limit.
14:15
Feynman integrals over trajectories in the phase space
Abstract
Hamiltonian Feynman path integrals, or Feynman (path) integrals over
trajectories in the phase space, are values, which some
pseudomeasures, usually called Feynman (pseudo)measures (they are
distributions, in the sense of the Sobolev-Schwartz theory), take on
functions defined on trajectories in the phase space; so such
functions are integrands in the Feynman path integrals. Hamiltonian
Feynman path integrals (and also Feynman path integrals over
trajectories in the configuration space) are used to get some
representations of solutions for Schroedinger type equations. In the
talk one plans to discuss the following problems.
15:45
Result of PhD thesis which is a large deviation result for diffusions under the influence of a strong drift
Abstract
We present a large deviation result for the behaviour of the
end-point of a diffusion under the influence of a strong drift. The rate
function can be explicitely determined for both attracting and repelling
drift. It transpires that this problem cannot be solved using
Freidlin-Wentzel theory alone. We present the main ideas of a proof which
is based on the Girsanov-Formula and Tauberian theorems of exponential type.
14:15
The Large deviations of estimating large deviations rate-functions
Abstract
Let {X_n} be a sequence of bounded, real-valued random variables.
Assume that the partial-sums processes {S_n}, where S_n=X_1+...+X_n,
satisfies the large deviation principle with a convex rate-function, I().
Given an observation of the process {X_n}, how would you estimate I()? This
talk will introduce an estimator that was proposed to tackle a problem in
telecommunications and discuss it's properties. In particular, recent
results regarding the large deviations of estimating I() will be presented.
The significance of these results for the problem which originally motivated
the estimator, estimating the tails of queue-length distributions, will be
demonstrated. Open problems will be mentioned and a tenuous link to Oxford's
Mathematical Institute revealed.
15:45
The Stability of Linear Stochastic Differential Equations with Jump
Abstract
Under the nondegenerate condition as in the diffusion case, we show
that the linear stochastic jump diffusion process projected on the
unite sphere has an uni que invariant probabolity measure. The
Lyapunov exponentcan be represented as an integral over the
sphere. These results were extended to the degenerated and Levy jump
cases.
14:15
Anderson localisation for multi-particle systems
Abstract
Anderson localisation is an important phenomenon describing a
transition between insulation and conductivity. The problem is to analyse
the spectrum of a Schroedinger operator with a random potential in the
Euclidean space or on a lattice. We say that the system exhibits
(exponential) localisation if with probability one the spectrum is pure
point and the corresponding eigen-functions decay exponentially fast.
So far in the literature one considered a single-particle model where the
potential at different sites is IID or has a controlled decay of
correlations. The present talk aims at $N$-particle systems (bosons or
fermions) where the potential sums over different sites, and the traditional
approach needs serious modifications. The main result is that if the
`randomness' is strong enough, the $N$-particle system exhibits
localisation.
The proof exploits the muli-scale analysis scheme going back to Froehlich,
Martinelli, Scoppola and Spencer and refined by von Drefus and Klein. No
preliminary knowledge of the related material will be assumed from the
audience, apart from basic facts.
This is a joint work with V Chulaevsky (University of Reims, France)
15:45
Conditional Cameron-Martin's formula for diffusions
Abstract
I will present a new formula for diffusion processes which involving
Ito integral for the transition probability functions. The nature of
the formula I discovered is very close to the Kac formula, but its
form is similar to the Cameron-Martin formula. In some sense it is the
Cameron-Martin formula for pinned diffusions.
14:15
Endogeny and Dynamics for processes indexed by trees
Abstract
I will consider a stochastic process ( \xi_u; u \in
\Gamma_\infty ) where \Gamma_\infty is the set of vertices of an
infinite binary tree which satisfies some recursion relation
\xi_u= \phi(\xi_{u0},\xi_{u1}, \epsilon_u) \text { for each } u \in \Gamma_\infty.
Here u0 and u1 denote the two immediate daughters of the vertex u.
The random variables ( \epsilon_u; u\in \Gamma_\infty), which
are to be thought of as innovations, are supposed independent and
identically distributed. This type of structure is ubiquitous in models
coming from applied proability. A recent paper of Aldous and Bandyopadhyay
has drawn attention to the issue of endogeny: that is whether the process
( \xi_u; u \in \Gamma_\infty) is measurable with respect to the
innovations process. I will explain how this question is related to the
existence of certain dynamics and use this idea to develop a necessary and
sufficient condition [ at least if S is finite!] for endogeny in terms of
the coupling rate for a Markov chain on S^2 for which the diagonal is
absorbing.
15:45
Isoperimetric inequalities for independent variables
Abstract
We shall review recent progress in the understanding of
isoperimetric inequalities for product probability measures (a very tight
description of the concentration of measure phenomeonon). Several extensions
of the classical result for the Gaussian measure were recently derived by
functional analytic methods.
14:15
About the Hopfield model of spin-glasses
Abstract
The Hopfield model took his name and its popularity within the theory
of formal neural networks. It was introduced in 1982 to describe and
implement associative memories. In fact, the mathematical model was
already defined, and studied in a simple form by Pastur and Figotin in
an attempt to describe spin-glasses, which are magnetic materials with
singular behaviour at low temperature. This model indeed shows a very
complex structure if considered in a slightly different regime than
the one they studied. In the present talk we will focus on the
fluctuations of the free energy in the high-temperature phase. No
prior knowledge of Statistical mechanics is required to follow the
talk.
15:45
Joe Doob (1910-2004)
Abstract
Joe Doob, who died recently aged 94, was the last survivor of the
founding fathers of probability. Doob was best known for his work on
martingales, and for his classic book, Stochastic Processes (1953).
The talk will combine an appreciation of Doob's work and legacy with
reminiscences of Doob the man. (I was fortunate to be a colleague of
Doob from 1975-6, and to get to know him well during that year.)
Following Doob's passing, the mantle of greatest living probabilist
descends on the shoulders of Kiyosi Ito (b. 1915), alas now a sick
man.
14:15
Stochastic individual processes and approximations in the Darwinian evolution
Abstract
We are interested in a microscopic stochastic description of a
population of discrete individuals characterized by one adaptive
trait. The population is modeled as a stochastic point process whose
generator captures the probabilistic dynamics over continuous time of
birth, mutation and death, as influenced by each individual's trait
values, and interactions between individuals. An offspring usually
inherits the trait values of her progenitor, except when a mutation
causes the offspring to take an instantaneous mutation step at birth
to new trait values. Once this point process is in place, the quest
for tractable approximations can follow different mathematical paths,
which differ in the normalization they assume (taking limit on
population size , rescaling time) and in the nature of the
corresponding approximation models: integro or integro-differential
equations, superprocesses. In particular cases, we consider the long
time behaviour for the stochastic or deterministic models.
14:00
Application of TBBA to calculations of some finance problems
14:15
Completing Stochastic Volatility Models with Variance Swaps
Abstract
Complete stochastic volatility models provide prices and
hedges. There are a number of complete models which jointly model an
underlying and one or more vanilla options written on it (for example
see Lyons, Schonbucher, Babbar and Davis). However, any consistent
model describing the volatility of options requires a complex
dependence of the volatility of the option on its strike. To date we
do not have a clear approach to selecting a model for the volatility
of these options
15:45
Rough Paths revisited
Abstract
A version of Lyons theory of rough path calculus which applies to a
subclass of rough paths for which more geometric interpretations are
valid will be presented. Application will be made to the Brownian and
to the (fractional) support theorem.
14:15
The cut-off phenomenon for finite Markov chains
Abstract
The convergence to stationarity of many finite ergodic Markov
chains presents a sharp cut-off: there is a time T such that before
time T the chain is far from its equilibrium and, after time T,
equilibrium is essentially reached. We will discuss precise
definitions of the cut-off phenomenon, examples, and some partial
results and conjectures.
15:45