Forthcoming events in this series


Mon, 24 Feb 2014

14:15 - 15:15
Eagle House

The splitting method for SPDEs: from robustness to applications in financial engineering, nonlinear filtering and optimal control

HARALD OBERHAUSER
(University of Oxford)
Abstract

The splitting-up method is a powerful tool to solve (SP)DEs by dividing the equation into a set of simpler equations that are easier to handle. I will speak about how such splitting schemes can be derived and extended by insights from the theory of rough paths.

Finally, I will discuss numerics for real-world applications that appear in the management of risk and engineering applications like nonlinear filtering.

Mon, 17 Feb 2014

15:45 - 16:45
Eagle House

tbc

YAN DOLINSKY
(Hebrew University Jerusalem Israel)
Abstract
Mon, 17 Feb 2014

14:15 - 15:15
Eagle House

Estimating stochastic volatility models using the Fourier transform

IMMA CURATO
(University of ULM Germany)
Abstract


Despite the ability of the stochastic volatility models along with their multivariate and multi-factor extension to describe the dynamics of the asset returns, these
models are very difficult to calibrate to market information. The recent financial crises, however, highlight that we can not use simplified models to describe the fincancial returns. Therefore, our statistical methodologies have to be improved. We propose a non parametricmethodology based on the use of the Fourier transform and the high frequency data which allows to estimate the diffusion and the leverage components of a general stochastic volatility model driven by continuous Brownian semimartingales. Our estimation procedure is based only on a pre-estimation of the Fourier coefficients of the volatility process and on the use of the Bohr convolution product as in Malliavin and Mancino 2009. This approach constitutes a novelty in comparison with the non-parametric methodologies proposed in the literature generally based on a pre-estimation of the spot volatility and in virtue of its definition it can be directly applied in the case of irregular tradingobservations of the price path an microstructure noise contaminations.

Mon, 10 Feb 2014

14:15 - 15:15
Eagle House

Discretely sampled signals and the rough Hoff path

GUY FLINT
(University of Oxford)
Abstract

Sampling a $d$-dimensional continuous signal (say a semimartingale) $X:[0,T] \rightarrow \mathbb{R}^d$ at times $D=(t_i)$, we follow the recent papers [Gyurko-Lyons-Kontkowski-Field-2013] and [Lyons-Ni-Levin-2013] in constructing a lead-lag path; to be precise, a piecewise-linear, axis-directed process $X^D: [0,1] \rightarrow
\mathbb{R}^{2d}$ comprised of a past and future component. Lifting $X^D$ to its natural rough path enhancement, we can consider the question of convergence as
the latency of our sampling becomes finer.

Mon, 03 Feb 2014

15:45 - 16:45
Eagle House

Handwriting,signatures, and convolutions

BEN GRAHAM
(University of Warwick)
Abstract

The'signature', from the theory of differential equations driven by rough paths,
provides a very efficient way of characterizing curves. From a machine learning
perspective, the elements of the signature can be used as a set of features for
consumption by a classification algorithm.

Using datasets of letters, digits, Indian characters and Chinese characters, we
see that this improves the accuracy of online character recognition---that is
the task of reading characters represented as a collection of pen strokes.

Mon, 03 Feb 2014

14:15 - 15:15
Eagle House

TBC

DANYU YANG
(University of Oxford)
Mon, 20 Jan 2014

15:45 - 16:45

Random matrices at high temperature"

ROMAIN ALLEZ
(WIAS Berlin)
Abstract

We shall discuss the statistics of the eigenvalues of large random Hermitian matrices when the temperature is very high. In particular we shall focus on the transition from Wigner/Airy to Poisson regime.

Mon, 02 Dec 2013

15:45 - 16:45
Oxford-Man Institute

Moderate deviations for sums of dependent variables, and the method of cumulants

Pierre-Loic Meliot
(Universite Paris Sud)
Abstract

Abstract: Given a sequence of random variables X_n that converge toward a Gaussian distribution, by looking at the next terms in the asymptotic E[exp(zX_n)] = exp(z^2 / 2) (1+ ...), one can often state a principle of moderate deviations. This happens in particular for sums of dependent random variables, and in this setting, it becomes useful to develop techniques that allow to compute the precise asymptotics of exponential generating series. Thus, we shall present a method of cumulants, which gives new results for the deviations of certain observables in statistical mechanics:

- the number of triangles in a random Erdos-Renyi graph;

- and the magnetization of the one-dimensional Ising model.

Mon, 02 Dec 2013

14:15 - 15:15
Oxford-Man Institute

"Extracting information from the signature of a financial data stream"

Greg Gyurko
(University of Oxford)
Abstract

Market events such as order placement and order cancellation are examples of the complex and substantial flow of data that surrounds a modern financial engineer. New mathematical techniques, developed to describe the interactions of complex oscillatory systems (known as the theory of rough paths) provides new tools for analysing and describing these data streams and extracting the vital information. In this paper we illustrate how a very small number of coefficients obtained from the signature of financial data can be sufficient to classify this data for subtle underlying features and make useful predictions.

This paper presents financial examples in which we learn from data and then proceed to classify fresh streams. The classification is based on features of streams that are specified through the coordinates of the signature of the path. At a mathematical level the signature is a faithful transform of a multidimensional time series. (Ben Hambly and Terry Lyons \cite{uniqueSig}), Hao Ni and Terry Lyons \cite{NiLyons} introduced the possibility of its use to understand financial data and pointed to the potential this approach has for machine learning and prediction.

We evaluate and refine these theoretical suggestions against practical examples of interest and present a few motivating experiments which demonstrate information the signature can easily capture in a non-parametric way avoiding traditional statistical modelling of the data. In the first experiment we identify atypical market behaviour across standard 30-minute time buckets sampled from the WTI crude oil future market (NYMEX). The second and third experiments aim to characterise the market "impact" of and distinguish between parent orders generated by two different trade execution algorithms on the FTSE 100 Index futures market listed on NYSE Liffe.

Mon, 25 Nov 2013

15:45 - 16:45
Oxford-Man Institute

: Invariance Principle for the Random Conductance Model in a degenerate ergodic environment

Sebastian Andres
(Bonn University)
Abstract

Abstract:In this talk we consider a continuous time random walk $X$ on $\mathbb{Z}^d$ in an environment of random conductances taking values in $[0, \infty)$. Assuming that the law of the conductances is ergodic with respect to space shifts, we present a quenched invariance principle for $X$ under some moment conditions on the environment. The key result on the sublinearity of the corrector is obtained by Moser's iteration scheme. Under the same conditions we also present a local limit theorem. For the proof some Hölder regularity of the transition density is needed, which follows from a parabolic Harnack inequality. This is joint work with J.-D. Deuschel and M. Slowik.

Mon, 25 Nov 2013

14:15 - 15:15
Oxford-Man Institute

Dimension-independent, likelihood informed sampling for Bayesian inverse problems

Kody Law
Abstract

When cast in a Bayesian setting, the solution to an inverse problem is given as a distribution over the space where the quantity of interest lives. When the quantity of interest is in principle a field then the discretization is very high-dimensional. Formulating algorithms which are defined in function space yields dimension-independent algorithms, which overcome the so-called curse of dimensionality. These algorithms are still often too expensive to implement in practice but can be effectively used offline and on toy-models in order to benchmark the ability of inexpensive approximate alternatives to quantify uncertainty in very high-dimensional problems. Inspired by the recent development of pCN and other function-space samplers [1], and also the recent independent development of Riemann manifold methods [2] and stochastic Newton methods [3], we propose a class of algorithms [4,5] which combine the benefits of both, yielding various dimension-independent and likelihood-informed (DILI) sampling algorithms. These algorithms can be effective at sampling from very high-dimensional posterior distributions.

[1] S.L. Cotter, G.O. Roberts, A.M. Stuart, D. White. "MCMC methods for functions: modifying old algorithms to make them faster," Statistical Science (2013).

[2] M. Girolami, B. Calderhead. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 (2), 123–214 (2011).

[3] J. Martin, L. Wilcox, C. Burstedde, O. Ghattas. "A stochastic newton mcmc method for large-scale statistical inverse problems with application to seismic inversion," SIAM Journal on Scientific Computing 34(3), 1460–1487 (2012).

[4] K. J. H. Law. "Proposals Which Speed Up Function-Space MCMC," Journal of Computational and Applied Mathematics, in press (2013). http://dx.doi.org/10.1016/j.cam.2013.07.026

[5] T. Cui, K.J.H. Law, Y. Marzouk. Dimension-independent, likelihood- informed samplers for Bayesian inverse problems. In preparation.

Mon, 18 Nov 2013

15:45 - 16:45
Oxford-Man Institute

:On nonparametric Bernstein-von Mises theorems'

Ismael Castillo
(Universities Paris VI & VII)
Abstract

Abstract : The Bayesian approach is a possible way to build estimators in statistical models. It consists in attributing a probability measure -the prior- to the unknown parameters of the model. The estimator is then the posterior distribution, which is a conditional distribution given the information contained in the data.

The Bernstein-von Mises theorem in parametric models states that under mild regularity conditions, the posterior distribution for the finite-dimensional model parameter is asymptotically Gaussian with `optimal' centering and variance.

In this talk I will discuss recent advances in the understanding of posterior distributions in nonparametric models, that is when the unknown parameter is infinite-dimensional, focusing on a concept of nonparametric Bernstein-von Mises theorem.

Mon, 18 Nov 2013

14:15 - 15:15
Oxford-Man Institute

"Stochastic calculus for non-semimartingales in Banach spaces, an infinite dimensional PDE and some stability results".

Cristina Di Girolami
(Università G.D'Annunzio di Pescara (Italy) and Université du Maine)
Abstract

This talk develops some aspects of stochastic calculus via regularization for processes with values in a general Banach space B.

A new concept of quadratic variation which depends on a particular subspace is introduced.

An Itô formula and stability results for processes admitting this kind of quadratic variation are presented.

Particular interest is devoted to the case when B is the space of real continuous functions defined on [-T,0], T>0 and the process is the window process X(•) associated with a continuous real process X which, at time t, it takes into account the past of the process.

If X is a finite quadratic variation process (for instance Dirichlet, weak Dirichlet), it is possible to represent a large class of path-dependent random variable h as a real number plus a real forward integral in a semiexplicite form.

This representation result of h makes use of a functional solving an infinite dimensional partial differential equation.

This decomposition generalizes, in some cases, the Clark-Ocone formula which is true when X is the standard Brownian motion W. Some stability results will be given explicitly.

This is a joint work with Francesco Russo (ENSTA ParisTech Paris)."

Mon, 11 Nov 2013

15:45 - 16:45
Oxford-Man Institute

A Set of Characteristic Functions on the Space of Signatures

Ilya Chevyrev
(University of Oxford)
Abstract

Abstract: The expected signature is often viewed as a direct analogue of the Laplace transform, and as such it has been asked whether, under certain conditions, it may determine the law of a random signature. In this talk we first introduce a meaningful topology on the space of (geometric) rough paths which allows us to study it as a well-defined probability space. With the help of compact symplectic Lie groups, we then define a set of characteristic functions and show that two random variables in this space are equal in law if and only if they agree on each characteristic function. We finally show that under very general boundedness conditions, the value of each characteristic function is completely determined by the expected signature, giving an affirmative answer to the aforementioned question in many cases. In particular, we demonstrate that the Stratonovich signature is completely determined in law by its expected signature, and show how a similar technique can be used to demonstrate convergence in law of random signatures.

Background material: http://arxiv.org/abs/1307.3580

Mon, 11 Nov 2013

14:15 - 15:15
Oxford-Man Institute

Sequential Monte Carlo for Early-Exercise Option Pricing

Ricky Rambharat
(OCC. Treasury)
Abstract

A review of a valuation strategy to price American-style option contracts in a “limited information” framework is discussed where sequential Monte Carlo (SMC) techniques, as presented in Doucet, de Freitas, and Gordon’s text Sequential Monte Carlo Methods in Practice, and the least–squares Monte Carlo (LSM) approach of Longstaff and Schwartz (Review of Financial Studies 14:113-147, 2001), are used as part of the valuation methodology. We utilize a risk–neutralized version of a mean-reverting model to model the volatility process. We assume that volatility is a latent stochastic process, and we capture information about it using “summary vectors” based on sequential Monte Carlo posterior filtering distributions. Of primary interest in this work is an empirical assessment of American options governed by a stochastic volatility model where the focus is on the market price of volatility risk (or the volatility risk premium). We discuss statistical modeling of the market price of volatility risk as our current evidence reveals interesting nuances about the volatility risk premium, and we hypothesize that switching models or more sophisticated time-series models could be of value to understand the empirical observations we found on the market price of volatility risk. Prior studies have shown that the magnitude of the volatility risk premium changes markedly when an American index option (NYSE Arca Oil Index Options) is in its expiration month relative to prior months, or that the magnitude varies across equities. Our objective is to study if useful information can be extracted from the volatility risk premium process, and how this information can better inform holders of American options when making decisions under uncertainty.

Key words: American options, stochastic volatility, volatility risk, sequential, Monte Carlo, risk premium, decisions, uncertainty

Disclaimer: The views expressed in this abstract (and the paper that will accompany it) are solely those of the authors and do not, in any way, reflect the opinions of the Office of the Comptroller of the Currency (OCC).

Mon, 04 Nov 2013

15:45 - 16:45
Oxford-Man Institute

On interacting strong urns

Vlada Limic
(Universite Paris Sud)
Abstract

The talk will recall the results of three preprints, first two authored by my former student Mickael Launay, and the final coauthored by Mickael and myself. All three works are available on arXiv. At this point it is not clear that they will ever get published (or submitted for review) but hopefully this does not make their contents less interesting. This class of interacting urn processes was introduced in Launay's thesis, in an attempt to model more realistically the memory sharing that occurs in food trail pheromone marking or in similar collective learning phenomena. An interesting critical behavior occurs already in the case of exponential reinforcement. No prior knowledge of strong urns will be assumed, and I will try to explain the reason behind the phase transition.

Mon, 04 Nov 2013

14:15 - 15:15
Oxford-Man Institute

Coalescing flows: a new approach

Nathanael Berestycki
(University of Cambridge)
Abstract

The coalescing Brownian flow on $\R$ is a process which was introduced by Arratia (1979) and Toth and Werner (1997), and which formally corresponds to starting coalescing Brownian motions from every space-time point. We provide a new state space and topology for this process and obtain an invariance principle for coalescing random walks. The invariance principle holds under a finite variance assumption and is thus optimal. In a series of previous works, this question was studied under a different topology, and a moment of order $3-\eps$ was necessary for the convergence to hold. Our proof relies crucially on recent work of Schramm and Smirnov on scaling limits of critical percolation in the plane. Our approach is sufficiently simple that we can handle substantially more complicated coalescing flows with little extra work -- in particular similar results are obtained in the case of coalescing Brownian motions on the Sierpinski gasket. This is the first such result where the limiting paths do not enjoy the non-crossing property.

Joint work with Christophe Garban (Lyon) and Arnab Sen (Minnesota).

Mon, 28 Oct 2013

15:45 - 16:45
Oxford-Man Institute

Small-particle scaling limits in a regularized Laplacian growth model"

Alan Sola
(University of Cambridge)
Abstract

With F. Johansson Viklund (Columbia) and A. Turner (Lancaster), we have studied a regularized version of the Hastings-Levitov model of random Laplacian growth. In addition to the usual feedback parameter $\alpha>0$, this regularized version of the growth process features a smoothing parameter $\sigma>0$.

We prove convergence of random clusters, in the limit as the size of the individual aggregating particles tends to zero, to deterministic limits, provided the smoothing parameter does not tend to zero too fast. We also study scalings limit of the harmonic measure flow on the boundary, and show that it can be described in terms of stopped Brownian webs on the circle. In contrast to the case $\alpha=0$, the flow does not always collapse into a single Brownian motion, which can be interpreted as a random number of infinite branches being present in the clusters.

Mon, 28 Oct 2013

14:15 - 15:15
Oxford-Man Institute

The boundary Harnack principle in fractal spaces

Janna Lier
(Bonn University)
Abstract

Abstract: The boundary Harnack principle states that the ratio of any two functions, which are positive and harmonic on a domain, is bounded near some part of the boundary where both functions vanish. A given domain may or may not have this property, depending on the geometry of its boundary and the underlying metric measure space.

In this talk, we will consider a scale-invariant boundary Harnack principle on domains that are inner uniform. This has applications such as two-sided bounds on the Dirichlet heat kernel, or the identification of the Martin boundary and the topological boundary for bounded inner uniform domains.

The inner uniformity provides a large class of domains which may have very rough boundary as long as there are no cusps. Aikawa and Ancona proved the scale-invariant boundary Harnack principle on inner uniform domains in Euclidean space. Gyrya and Saloff-Coste gave a proof in the setting of non-fractal strictly local Dirichlet spaces that satisfy a parabolic Harnack inequality.

I will present a scale-invariant boundary Harnack principle for inner uniform domains in metric measure Dirichlet spaces that satisfy a parabolic Harnack inequality. This result applies to fractal spaces.

Mon, 21 Oct 2013

15:45 - 16:45
Oxford-Man Institute

Learning an evolving system using Rough Paths Theory

Ni Hao
(University of Oxford)
Abstract

''Regression analysis aims to use observational data from multiple observations to develop a functional relationship relating explanatory variables to response variables, which is important for much of modern statistics, and econometrics, and also the field of machine learning. In this paper, we consider the special case where the explanatory variable is a stream of information, and the response is also potentially a stream. We provide an approach based on identifying carefully chosen features of the stream which allows linear regression to be used to characterise the functional relationship between explanatory variables and the conditional distribution of the response; the methods used to develop and justify this approach, such as the signature of a stream and the shue product of tensors, are standard tools in the theory of rough paths and seem appropriate in this context of regression as well and provide a surprisingly unified and non-parametric approach.''

Mon, 21 Oct 2013

14:15 - 15:15
Oxford-Man Institute

Asymptotic independence of three statistics of the maximal increments of random walks and Levy processes

Aleksandar Mijatovic
(Imperial College London)
Abstract
Abstract: Let $H(x) = \inf\{n:\, \exists\, k x\}$ be the first epoch that an increment of the size larger than $x>0$ of a random walk $S$ occurs and consider the path functionals: $$ R_n = \max_{m\in\{0, \ldots, n\}}\{S_{n} - S_m\}, R_n^* = \max_{m,k\in\{0, \ldots, n\}, m\leq k} \{S_{k}-S_m\} \text{and} O_x=R_{H(x)}-x.$$ The main result states that, under Cram\'{e}r's condition on the step-size distribution of $S$, the statistics $R_n$, $R_n^* -y$ and $O_{x+y}$ are asymptotically independent as $\min\{n,y,x\}\uparrow\infty$. Furthermore, we establish a novel Spitzer-type identity characterising the limit law $O_\infty$ in terms of the one-dimensional marginals of $S$. If $y=\gamma^{-1}\log n$, where $\gamma$ is the Cram\'er coefficient, our results together with the classical theorem of Iglehart (1972) imply the existence of a joint weak limit of the three statistics and identify its law. As corollary we obtain a new factorization of the exponential distribution as a convolution of the asymptotic overshoot $O_\infty$ and the stationary distribution of the reflected random walk $R$. We prove analogous results for the corresponding statistics of a L\'{e}vy process. This is joint work with M. Pistorius.