Forthcoming events in this series


Mon, 20 Oct 2025
15:30
L5

Skein modules are holonomic 

David Jordan
(University of Edinburgh)
Abstract
Abstract:  Skein modules capture vector spaces of line operators in 3D Chern-Simons, equivalently line operators constrained to a 3-dimensional boundary in the Kapustin-Witten twist of 4D N=4 gauge theory.  They have an elementary mathemical definition via representation theory of quantum groups.
 
In recent work with Iordanis Romaidis we proved that when the quantum parameter is generic, the skein module of a 3-manifold is finitely generated relative to the skein algebra of its boundary and that moreover the resulting singular support variety is Lagrangian, hence that skein modules are holonomic. Our results confirm and strengthen a conjecture of Detcherry, and imply a conjecture of Frohman, Gelca and LoFaro from 2002 (the latter independently established this year by Beletti and Detcherry using other methods).
 
In the talk I will give an outline of the key ingredients of the proof, which recreate elements of the classical theory of differential operators in the skein setting. 

 
Mon, 13 Oct 2025
15:30
L5

Virtual fibring and Poincaré duality

Dawid Kielak
(Mathematical Institute Oxford)
Abstract

I will talk about the problem of recognising when a manifold admits a finite cover that fibres over the circle, with emphasis on the case of hyperbolic manifolds in odd dimensions. I will survey the state-of-art, and discuss the role that group theory plays in the problem. Finally, I will discuss a recent result that sheds light on the analogous group-theoretic problem, that is, virtual algebraic fibring of Poincaré-duality groups. The final theorem is joint with Sam Fisher and Giovanni Italiano.

Mon, 16 Jun 2025

15:30 - 16:30
L5

A unitary three-functor formalism for commutative Von Neumann algebras

Thomas Wasserman
(Oxford University)
Abstract

Six-functor formalisms are ubiquitous in mathematics, and I will start this talk by giving a quick introduction to them. A three-functor formalism is, as the name suggests, (the better) half of a six-functor formalism. I will discuss what it means for such a three-functor formalism to be unitary, and why commutative Von Neumann algebras (and hence, by the Gelfand-Naimark theorem, measure spaces) admit a unitary three-functor formalism that can be viewed as mixing sheaf theory with functional analysis. Based on joint work with André Henriques.

Mon, 09 Jun 2025
15:30
L5

Planar loops and the homology of Temperley-Lieb algebras

Guy Boyde
(Universiteit Utrecht)
Abstract

Temperley-Lieb algebras are certain finite-dimensional algebras coming originally from statistical physics and knot theory. Around 2019, they became one of the first examples of homological stability for algebras (homology is here taken to be certain Tor-groups), when Boyd and Hepworth showed that in low dimensions the homology vanishes. We're now able to give complete calculations of their homology, which has a surprisingly rich structure (and in particular is very far from vanishing). This is joint work in progress with Rachael Boyd, Oscar Randal-Williams, and Robin Sroka. Prerequisites will be minimal: it will be enough to know what Tor is.

Mon, 02 Jun 2025
15:30
L5

Some geometry around torsion homology

Cameron Gates Rudd
(Oxford University )
Abstract

Given a space with some kind of geometry, one can ask how the geometry of the space relates to its homology. This talk will survey some comparisons of geometric notions of complexity with homological notions of complexity. We will then focus on hyperbolic 3-manifolds and the main result will replace a spectral gap problem related to torsion in homology with a geometric version involving geodesic length and stable commutator length. As an application, we provide "bad" examples of hyperbolic 3-manifolds with bounded geometry but extremely small (1-form) spectral gaps.

Mon, 26 May 2025
15:30
L5

Relative Invertibility and Full Dualizability of Finite Braided Tensor Categories

Thibault Décoppet
(Harvard University)
Abstract

I will discuss an enriched version of Shimizu's characterizations of non-degeneracy for finite braided tensor categories. Using these characterizations, it follows that an enriched finite braided tensor category is invertible as an object of the Morita 4-category of enriched braided tensor categories if and only if it is non-degenerate. As an application, I will explain how to extend the full dualizability result of Brochier-Jordan-Synder by showing that a finite braided tensor category is fully dualizable in the Morita 4-category of braided tensor categories if its symmetric center is separable.
 

Mon, 19 May 2025
15:30
L5

Stable equivalence relations of 4-manifolds

Daniel Kasprowski
(University of Southampton)
Abstract

Kreck’s modified surgery gives an approach to classify 2n-manifolds up to stable diffeomorphism, i.e., up to a connected sum with copies of $S^n \times  S^n$. In dimension 4, we use a combination of modified and classical surgery to compare the stable diffeomorphism classification with other stable equivalence relations. Most importantly, we consider homotopy equivalence up to connected sum with copies of $S^2 \times  S^2$. This talk is based on joint work with John Nicholson and Simona Veselá.

Mon, 12 May 2025
15:30
L5

Surgery presentations of bordism bicategories

Filippos Sytilidis
(Oxford University)
Abstract

A topological quantum field theory (TQFT) is a functor from a category of bordisms to a category of vector spaces. Classifying low-dimensional TQFTs often involves presenting bordism categories in terms of generators and relations. In this talk, we introduce these concepts and outline a general procedure for obtaining such presentations using Morse–Cerf theory and surgery. We further discuss how this perspective can be extended to yield presentations of bordism bicategories.


 
Mon, 05 May 2025
15:30
L5

Systolic freedom

Alexey Balitskiy
(University of Luxembourg)
Abstract
Systolic geometry is a subfield of quantitative topology, which started in the late 40s from questions of the following sort: given a non-simply-connected surface (or a higher-dimensional Riemannian manifold), what is the length of the shortest non-contractible loop? This quantity is called the systole; another example of a systolic invariant is the cosystole, which is the smallest area of a codimension-1 submanifold that does not separate the manifold into several pieces. Answering a question of Gromov, in 1999 Freedman exhibited first examples of Riemannian metrics in which the product of the systole and the cosystole exceeds the volume; this manifests the phenomenon of systolic freedom. In our joint work with Hannah Alpert and Larry Guth, we showed that Freedman's examples are almost as "free" as possible, by bounding the systolic product by the volume raised to the power of $1+\epsilon$. I will give an overview of the systolic freedom phenomenon, including the flavors of proofs in the field.


 

Mon, 28 Apr 2025
15:30
L5

Certifying hyperbolicity of fibred 3-manifolds

Filippo Baroni
(Oxford University)
Abstract

Given a triangulated 3-manifold, can we decide whether it is hyperbolic? In general, no efficient algorithm for answering this question is known; however, the problem becomes more manageable if we restrict our attention to specific classes of 3-manifolds. In this talk, I will discuss how to certify that a triangulated fibred 3-manifold is hyperbolic, in polynomial time in the size of the triangulation and in the Euler characteristic of the fibre. The argument relies on the theory of normal surfaces, as well as several previously known certification algorithms, of which I will give a survey. I will also mention, time permitting, a recent algorithm to decide if an element of the mapping class group of a surface is pseudo-Anosov in polynomial time, which is used in the certification procedure.

Mon, 10 Mar 2025
15:30
L5

Uniform spectral gaps above the tempered gap

Vikram Giri
(ETH Zurich)
Abstract
We will explore the possibility of getting uniform spectral gaps for some invariant differential operators on hyperbolic manifolds. We will see a construction of a sequence of hyperbolic 3-manifolds with a uniform spectral gap for the 1-form Laplacian acting on coclosed forms and conclude with an application of having such gaps to torsion homology growth. Based on joint works with A. Abdurrahman, A. Adve, B. Lowe, and J. Zung.
Mon, 03 Mar 2025
15:30
L5

The Gauss-Manin connection in noncommutative geometry

Ezra Getzler
(Northwestern University and Uppsala University)
Abstract

The noncommutative Gauss-Manin connection is a flat connection on the periodic cyclic homology of a family of dg algebras (or more generally, A-infinity categories), introduced by the speaker in 1991.

The problem now arises of lifting this connection to the complex of periodic cyclic chains. Such a lift was provided in 2007 by Tsygan, though without an explicit formula. In this talk, I will explain how this problem is simplified by considering a new A-infinity structure on the de Rham complex of a derived scheme, which we call the Fedosov product; in joint work with Jones in 1990, the speaker showed that this product plays a role in a multiplicative version of the Hochschild-Kostant-Rosenberg theorem, and the point of the present talk is that it seems to be the correct product on the de Rham complex for derived geometry.

Let be an open subset of a derived affine space parametrizing a family of -algebras . We will construct a chain level lift of the Gauss-Manin connection that satisfies a new equation that we call the Fedosov equation: .

Mon, 24 Feb 2025
15:30
L5

Small eigenvalues of hyperbolic surfaces

William Hide
(Oxford University)
Abstract

We study the spectrum of the Laplacian on finite-area hyperbolic surfaces of large volume, focusing on small eigenvalues i.e. those below 1/4. I will discuss some recent results and open problems in this area. Based on joint works with Michael Magee and with Joe Thomas.
 

Mon, 17 Feb 2025
15:30
L5

Koszul duality and Calabi Yau strutures

Julian Holstein
(Universität Hamburg)
Abstract
I will talk about two aspects of Koszul duality. Firstly, Koszul duality for dg categories provides a way of modelling dg categories as certain curved coalgebras. This is a linearization of the correspondence of simplicial categories as simplicial sets (quasi-categories). Secondly, Koszul duality exchanges smooth and proper Calabi-Yau structures for dg categories and curved coalgebras. This is a generalization and conceptual explanation of the following phenomen: For a topological space X with the homotopy type of a finite complex having an oriented Poincaré duality structure (with local coefficients) is equivalent to a smooth Calabi-Yau structure on the dg algebra of chains on the based loop space of X.  This is joint work with Andrey Lazarev and with Manuel Rivera, respectively.
Mon, 10 Feb 2025
15:30
L5

Invariants that are covering spaces and their Hopf algebras

Ehud Meir
(The University of Aberdeen)
Abstract
Different flavours of string diagrams arise naturally in studying algebraic structures (e.g. algebras, Hopf algebras, Frobenius algebras) in monoidal categories. In particular, closed diagrams can be realized as scalar invariants. For a structure of a given type the closed diagrams form a commutative algebra that has a richer structure of a self dual Hopf algebra. This is very similar, but not quite the same, as the positive self adjoint Hopf (or PSH) algebras that were introduced by Zelevinsky in studying families of representations of finite groups. In this talk I will show that the algebras of invariants admit a lattice that is a PSH-algebra. This will be done by considering maps between invariants, and realizing them as covering spaces. I will then show some applications to subgroup growth questions, and a formula that relates the Kronecker coefficients to finite index subgroups of free groups. If time permits, I will also explain some connections with 2 dimensional TQFTs.

 
 
Mon, 03 Feb 2025
15:30
L5

Relative Thom conjectures

Matthew Hedden
(Michigan State University)
Abstract

Gauge theory excels at solving minimal genus problems for 3- and 4-manifolds.  A notable triumph is its resolution of the Thom conjecture, asserting that the genus of a smooth complex curve in the complex projective plane is no larger than any smooth submanifold homologous to it.  Gauge theoretic techniques have also been used to verify analagous conjectures for Kähler surfaces or, more generally, symplectic 4-manifolds.  One can formulate versions of these conjectures for surfaces with boundary lying in a 3-manifold, and I'll discuss work in progress with Katherine Raoux which attempts to extend these "relative" Thom conjectures outside the complex (or even symplectic) realm using tools from Floer homology.

Mon, 27 Jan 2025
15:30
L5

(cancelled)

(Oxford University)
Mon, 20 Jan 2025
15:30
L5

The Farrell--Jones Conjecture and automorphisms of relatively hyperbolic groups

Naomi Andrew
(Oxford University)
Abstract

The Farrell--Jones conjecture predicts that the algebraic K-theory of a group ring is isomorphic to a certain equivariant homology theory, and there are also versions for L-theory and Waldhausen's A-theory. In principle, this provides a way to calculate these K-groups, and has many applications. These include classifying manifolds admitting a given fundamental group and a positive resolution of the Borel conjecture.

I will discuss work with Yassine Guerch and Sam Hughes on the Farrell--Jones conjecture for extensions of relatively hyperbolic groups, as well as an application to their automorphism groups in the one-ended case. The methods are from geometric group theory: we go via the theory of JSJ decompositions to produce acylindrical actions on trees.

Mon, 09 Dec 2024
15:30
L4

Unstable cohomology of SL(n,Z) and Hopf algebras

Peter Patzt
(University of Oklahoma)
Abstract

I want to give a survey about the rational cohomology of SL_n
Z. This includes recent developments of finding Hopf algebras in the
direct sum of all cohomology groups of SL_n Z for all n. I will give a
quick overview about Hopf algebras and what this structure implies for
the cohomology of SL_n Z.

Mon, 02 Dec 2024
15:30
L5

Building surfaces from equilateral triangles

Lasse Rempe
(Manchester University)
Abstract
In this talk, we consider the following question. Suppose that we glue a (finite or infinite) collection of closed equilateral triangles together in such a way that we obtain an orientable surface. The resulting surface is a Riemann surface; that is, it has a natural conformal structure (a way of measuring angles in tangent space). We ask which Riemann surfaces are *equilaterally triangulable*; i.e., can arise in this fashion.

The answer in the compact case is given by a famous classical theorem of Belyi, which states that a compact surface is equilaterally triangulable if and only if it is defined over a number field. These *Belyi surfaces* - and their associated “dessins d’enfants” - have found applications across many fields of mathematics, including mathematical physics.

In joint work with Chris Bishop, we give a complete answer of the same question for the case of infinitely many triangles (i.e., for non-compact Riemann surfaces). The talk should be accessible to a general mathematical audience, including postgraduate students.


 

Mon, 25 Nov 2024
15:30
L5

Frobenius categories and Homotopy Quantum Field Theories

Paul Großkopf
(Oxford University)
Abstract

Topological Quantum Field Theories (TQFTs) have been studied as mathematical toy models for quantum field theories in physics and are described by a functor out of some bordism category. In dimension 2, TQFTs are fully classified by Frobenius algebras. Homotopy Quantum Field Theories (HQFTs), introduced by Turaev, consider additional homotopy data to some target space X on the bordism categories. For homotopy 1-types Turaev also gives a classification via crossed G-Frobenius algebras, where G denotes the fundamental group of X.
In this talk we will introduce a multi-object generalization of Frobenius algebras called Frobenius categories and give a version of this classification theorem involving the fundamental groupoid. Further, we will give a classification theorem for HQFTs with target homotopy 2-types by considering crossed modules (joint work with Alexis Virelizier).
 

Mon, 18 Nov 2024
15:30
L5

Equivariant log concavity and representation stability

Nicholas Proudfoot
(University of Oregon)
Abstract

June Huh proved in 2012 that the Betti numbers of the complement of a complex hyperplane arrangement form a log concave sequence.  But what if the arrangement has symmetries, and we regard the cohomology as a representation of the symmetry group?  The motivating example is the braid arrangement, where the complement is the configuration space of n points in the plane, and the symmetric group acts by permuting the points.  I will present an equivariant log concavity conjecture, and show that one can use representation stability to prove infinitely many cases of this conjecture for configuration spaces.
 

Mon, 11 Nov 2024
15:30
L5

Two-generator subgroups of free-by-cyclic groups

Edgar Bering
(San José State University)
Abstract

In general, the classification of finitely generated subgroups of a given group is intractable. Restricting to two-generator subgroups in a geometric setting is an exception. For example, a two-generator subgroup of a right-angled Artin group is either free or free abelian. Jaco and Shalen proved that a two-generator subgroup of the fundamental group of an orientable atoroidal irreducible 3-manifold is either free, free-abelian, or finite-index. In this talk I will present recent work proving a similar classification theorem for two generator mapping-torus groups of free group endomorphisms: every two generator subgroup is either free or conjugate to a sub-mapping-torus group. As an application we obtain an analog of the Jaco-Shalen result for free-by-cyclic groups with fully irreducible atoroidal monodromy. While the statement is algebraic, the proof technique uses the topology of finite graphs, a la Stallings. This is joint work with Naomi Andrew, Ilya Kapovich, and Stefano Vidussi.
 

Mon, 04 Nov 2024
15:30
L5

Zariski closures of linear reflection groups

Sami Douba
(IHES)
Abstract

We show that linear reflection groups in the sense of Vinberg are often Zariski dense in PGL(n). Among the applications are examples of low-dimensional closed hyperbolic manifolds whose fundamental groups virtually embed as Zariski-dense subgroups of SL(n,Z), as well as some one-ended Zariski-dense subgroups of SL(n,Z) that are finitely generated but infinitely presented, for all sufficiently large n. This is joint work with Jacques Audibert, Gye-Seon Lee, and Ludovic Marquis.

Mon, 28 Oct 2024
15:30
L5

Poincaré duality fibrations and Kontsevich's Lie graph complex

Alexander Berglund
(Stockholm University)
Abstract

I will talk about certain higher algebraic structure, governed by Kontsevich's Lie graph complex, that can be associated to an oriented fibration with Poincaré duality fiber. We construct a generalized fiber integration map associated to each Lie graph homology class and the main result is that this gives a faithful representation of graph homology. I will discuss how this leads to new possible interpretations of Lie graph homology classes as obstructions to, on one hand, smoothness of Poincaré duality fibrations, and, on the other hand, the existence of Poincaré duality algebra resolutions of the cochains of the total space as a dg module over the cochains of the base space.

Mon, 14 Oct 2024
15:30
L5

The complexity of knots

Marc Lackenby
(Oxford University)
Abstract

In his final paper in 1954, Alan Turing wrote `No systematic method is yet known by which one can tell whether two knots are the same.' Within the next 20 years, Wolfgang Haken and Geoffrey Hemion had discovered such a method. However, the computational complexity of this problem remains unknown. In my talk, I will give a survey on this area, that draws on the work of many low-dimensional topologists and geometers. Unfortunately, the current upper bounds on the computational complexity of the knot equivalence problem remain quite poor. However, there are some recent results indicating that, perhaps, knots are more tractable than they first seem. Specifically, I will explain a theorem that provides, for each knot type K, a polynomial p_K with the property that any two diagrams of K with n_1 and n_2 crossings differ by at most p_K(n_1) + p_K(n_2) Reidemeister moves.

Mon, 10 Jun 2024
15:30
L5

Symmetries of the free-factor complex and commensurator rigidity for Aut(F)

Martin Bridson
(Oxford University)
Abstract

 A commensuration of a group G is an isomorphism between finite-index subgroups of G. Equivalence classes of such maps form a group, whose importance first emerged in the work of Margulis on the rigidity and arithmeticity of lattices in semisimple Lie groups. Drawing motivation from this classical setting and from the study of mapping class groups of surfaces, I shall explain why, when N is at least 3, the group of automorphisms of the free group of rank N is its own abstract commensurator. Similar results hold for certain subgroups of Aut(F_N). These results are the outcome of a long-running project with Ric Wade. An important element in the proof is a non-abelian analogue of the Fundamental Theorem of Projective Geometry in which projective subspaces are replaced by the free factors of a free group; this is the content of a long-running project with Mladen Bestvina.
 

Mon, 03 Jun 2024
15:30
L5

Geometric semi-norms in homology

Stephane Sabourau
(Université Paris-Est Créteil)
Abstract

The simplicial volume of a simplicial complex is a topological invariant
related to the growth of the fundamental group, which gives rise to a
semi-norm in homology. In this talk, we introduce the volume entropy
semi-norm, which is also related to the growth of the fundamental group
of simplicial complexes and shares functorial properties with the
simplicial volume. Answering a question of Gromov, we prove that the
volume entropy semi-norm is equivalent to the simplicial volume
semi-norm in every dimension. Joint work with I. Babenko.
 

Mon, 27 May 2024
15:30
L5

Non-semisimple link and manifold invariants: on algebraically strong invariants

Azat Gainutdinov
(CNRS, Université de Tours)
Abstract

I will talk about link and three-manifold invariants defined in terms of a non-semisimple finite ribbon category C together with a choice of tensor ideal and a trace on it. If the ideal is all of C, these invariants agree with those defined by Lyubashenko in the 90’s, and as we show, they only depend on the Grothendieck class of the objects labelling the link. These invariants are therefore not able to determine non-split extensions, or they are algebraically weak. However, we observed an interesting phenomenon: if one chooses an intermediate proper ideal between C and the minimal ideal of projective objects, the invariants become algebraically much stronger because they do distinguish non-trivial extensions. This is demonstrated in the case of C being the super-modular category of an exterior algebra. That is why these invariants deserve to be called “non-semisimple”. This is a joint work with J. Berger and I. Runkel.

Mon, 20 May 2024
15:30
L5

Hyperbolic manifolds, maps to the circle, and fibring

Giovanni Italiano
(Oxford University)
Abstract

We will discuss the problem of finding hyperbolic manifolds fibring over the circle; and show a method to construct and analyse maps from particular hyperbolic manifolds to S^1, which relies on Bestvina-Brady Morse theory. 
This technique can be used to build and detect fibrations, algebraic fibrations, and Morse functions with minimal number of critical points, which are interesting in the even dimensional case. 
After an introduction to the problem, and presentation of the main results, we will use the remaining time to focus on some easy 3-dimensional examples, in order to explicitly show the construction at work.
 

Mon, 13 May 2024
15:30
L5

Generating RAAGs in 1-relator groups

Ashot Minasyan
(Southampton University)
Abstract
Given a finite simplicial graph $\Gamma$, the right angled Artin group (RAAG) $A(\Gamma)$ is generated by the vertices of $\Gamma$ subject to the relations that two vertices commute if and only if they are adjacent in $\Gamma$. RAAGs play an important role in Geometric Group Theory and in Low Dimensional Topology.
 
Given a group $G$, a finite graph $\Gamma$ and a homomorphism $\phi: A(\Gamma) \to G$ one can ask for conditions ensuring that this homomorphism can be "promoted" to an injective one. In my talk I will discuss such criteria in the case when $G$ is a one-relator group and $\Gamma$ is a forest. In particular, I will sketch an argument showing that it is sufficient for $\phi$ to be injective on the positive sub-monoid of $A(\Gamma)$.
 
The talk will be based on joint work with Motiejus Valiunas (University of Wroclaw, Poland).

 
Mon, 06 May 2024
15:30
L5

Factorization algebras in quite a lot of generality

Clark Barwick
(University of Edinburgh)
Abstract

The objects of arithmetic geometry are not manifolds. Some concepts from differential geometry admit analogues in arithmetic, but they are not straightforward. Nevertheless, there is a growing sense that the right way to understand certain Langlands phenomena is to study quantum field theories on these objects. What hope is there of making this thought precise? I will propose the beginnings of a mathematical framework via a general theory of factorization algebras. A new feature is a subtle piece of additional structure on our objects – what I call an _isolability structure_ – that is ordinarily left implicit.

Mon, 29 Apr 2024
16:30
L5

Formality of $E_n$-algebras and cochains on spheres

Gijs Heuts
(University of Utrecht)
Abstract

It is a classical fact of rational homotopy theory that the $E_\infty$-algebra of rational cochains on a sphere is formal, i.e., quasi-isomorphic to the cohomology of the sphere. In other words, this algebra is square-zero. This statement fails with integer or mod p coefficients. We show, however, that the cochains of the n-sphere are still $E_n$-trivial with coefficients in arbitrary cohomology theories. This is a consequence of a more general statement on (iterated) loops and suspensions of $E_n$-algebras, closely related to Koszul duality for the $E_n$-operads. We will also see that these results are essentially sharp: if the R-valued cochains of $S^n$ have square-zero $E_{n+1}$-structure (for some rather general ring spectrum R), then R must be rational. This is joint work with Markus Land.

Mon, 22 Apr 2024
15:30
L5

Examples of topologically unknotted tori

Andras Juhasz
(Oxford University)
Abstract

I will discuss three different constructions of smooth tori in S^4 whose complements have fundamental group Z: turned 1-twist-spun tori due to Boyle, the union of a ribbon disc with a genus one Seifert surface constructed by Cochran and Davis, and certain tori with four critical points. They are all topologically unknotted, but it is not known whether they are smoothly standard, except for tori with four critical points whose middle level set is a split link. The branched double cover of S^4 along any of these surfaces is a potentially exotic copy of S^2 x S^2, though, in the case of Boyle's example, it cannot be distinguished from the standard S^2 x S^2 using Seiberg-Witten invariants. This is joint work with Mark Powell.

Mon, 04 Mar 2024
15:30
L4

Rigidity of ideal symmetric sets

Stephan Stadler
(Max Planck Institute for Mathematics)
Abstract

A subset in the ideal boundary of a CAT(0) space is called symmetric if every complete geodesic with one ideal boundary point
in the set has both ideal boundary points in the set. In the late 80s Eberlein proved that if a Hadamard manifold contains a non-trivial closed symmetric  subset in its ideal boundary, then its holonomy group cannot act transitively. This leads to rigidty via
the Berger-Simons Theorem. I will discuss rigidity of ideal symmetric sets in the general context of locally compact geodesically complete
CAT(0) spaces.
 

Mon, 26 Feb 2024
15:30
L4

Morava K-theory of infinite groups and Euler characteristic

Irakli Patchkoria
(University of Aberdeen)
Abstract

Given an infinite discrete group G with a finite model for the classifying space for proper actions, one can define the Euler characteristic of G and the orbifold Euler characteristic of G. In this talk we will discuss higher chromatic analogues of these invariants in the sense of stable homotopy theory. We will study the Morava K-theory of G and associated Euler characteristic, and give a character formula for the Lubin-Tate theory of G. This will generalise the results of Hopkins-Kuhn-Ravenel from finite to infinite groups and the K-theoretic results of Adem, Lück and Oliver from chromatic level one to higher chromatic levels. At the end we will mention explicit computations for some arithmetic groups and mapping class groups in terms of class numbers and special values of zeta functions. This is all joint with Wolfgang Lück and Stefan Schwede.

Mon, 19 Feb 2024
15:30
L4

Maps between spherical group algebras

Thomas Nikolaus
(Universitaet Muenster)
Abstract

I will speak about a central question in higher algebra (aka brave new algebra), namely which rings or schemes admit 'higher models', that is lifts to the sphere spectrum. This question is in some sense very classical, but there are many open questions. These questions are closely related to questions about higher versions of prismatic cohomology and delta ring, asked e.g. by Scholze and Lurie. Concretely we will consider the case of group algebras and explain how to understand maps between lifts of group algebras to the sphere spectrum. The results we present are joint with Carmeli and Yuan and on the prismatic side with Antieau and Krause.

Mon, 12 Feb 2024
15:30
L4

A filtration of handlebody Teichmüller space

Ric Wade
(Oxford University)
Abstract

The handlebody group is defined to be the mapping class group of a handelbody (rel. boundary). It is a subgroup of the mapping class group of the surface of the handlebody, and maps onto the outer automorphism group of its fundamental group (the free group of rank equal to its genus). 

Recently Hainaut and Petersen described a subspace of moduli space forming an orbifold classifying space for the handlebody group, and combined this with work of Chan-Galatius-Payne to construct cohomology classes in the group. I will talk about how one can build on their ideas to define a cocompact EG for the handlebody group inside Teichmüller space. This is a manifold with boundary and comes with a filtration by labelled disk systems which we call the `RGB (red-green-blue) disk complex.' I will describe this filtration, use it to describe the boundary of the manifold, and speculate about potential applications to duality results. Based on work-in-progress with Dan Petersen.

Mon, 05 Feb 2024
15:30
L4

Bicommutant categories

Andre Henriques
(Oxford University)
Abstract

Bicommutant categories, initially invented for the purposes of Chern-Simons theory and 2d CFT, seem to also appear in other domains of math with examples related to group theory, and dynamical systems.

Mon, 29 Jan 2024
15:30
L4

Categorifying the four color theorem with applications to Gromov-Witten theory

Scott Baldridge
(Louisiana State University)
Abstract
The four color theorem states that each bridgeless planar graph has a proper $4$-face coloring. It can be generalized to certain types of CW complexes of any closed surface for any number of colors, i.e., one looks for a coloring of the 2-cells (faces) of the complex with $m$ colors so that whenever two 2-cells are adjacent to a 1-cell (edge), they are labeled different colors.

In this talk, I show how to categorify the $m$-color polynomial of a surface with a CW complex. This polynomial is based upon Roger Penrose’s seminal 1971 paper on abstract tensor systems and can be thought of as the ``Jones polynomial’’ for CW complexes. The homology theory that results from this categorification is called the bigraded $m$-color homology and is based upon a topological quantum field theory (that will be suppressed from this talk due to time). The construction of this homology shares some similar features to the construction of Khovanov homology—it has a hypercube of states, multiplication and comultiplication maps, etc. Most importantly, the homology is the $E_1$ page of a spectral sequence whose $E_\infty$ page has a basis that can be identified with proper $m$-face colorings, that is, each successive page of the sequence provides better approximations of $m$-face colorings than the last. Since it can be shown that the $E_1$ page is never zero, it is safe to say that a non-computer-based proof of the four color theorem resides in studying this spectral sequence! (This is joint work with Ben McCarty.)

If time, I will relate this work to the study of the moduli space of stable genus $g$ curves with $n$ marked points. Using Strebel quadratic differentials, one can identify this moduli space with a subspace of the space of metric ribbon graphs with labeled boundary components. Proper $m$-face coloring in this setup is, in a sense, studying points in the space of metric ribbon graphs where similarly-colored boundaries (marked points) don’t get ``too close’’ to each other. We will end with some speculations about what this might mean for Gromov-Witten theory of Calabi-Yau manifolds.
 
Note to students: This talk will be hands-on with ideas explained through the calculation of examples. Graduate students and researchers who are interested in graph theory, topology, or representation theory are encouraged to attend.   
 
Wed, 24 Jan 2024
15:30

.

(Oxford University)
Mon, 22 Jan 2024
15:30

Surface automorphisms and elementary number theory

Greg McShane
(Universite Grenoble-Alpes)
Abstract
The modular surface $\mathbb{H}/\Gamma,\, \Gamma= \mathrm{SL}(2,\mathbb{Z})$ has many covers - for example the three punctured torus $\mathbb{H}/\Gamma(2)$ and the once punctured torus $\mathbb{H}/\Gamma'$. We will discuss how classical Diophantine approximation can be interpreted in terms of the behaviour of geodesics on the once punctured torus and a geometric reformulation of the Frobenius uniqueness conjecture.
We will then give an account of two theorems of Fermat in terms of   the automorphisms of $\mathbb{H}/\Gamma(2)$:
- if $p$ is a prime such that $4|(p-1)$ then  can be written as a   sum of squares $p = c^2 + d^2$
- if $p$ is a prime such that $3|(p-1)$ then  can be written as  $  p = c^2 +cd +  d^2$
Finally we will discuss possible extensions to surfaces of the for  m $\mathbb{H}/\Gamma_0(N)$.
 
Mon, 15 Jan 2024
15:30

Invariant splittings of HFK of satellite knots

Sungkyung Kang
(Oxford University)
Abstract

Involutive knot Floer homology, a refinement of knot Floer theory, is a powerful knot invariant which was used to solve several long-standing problems, including the one-is-not-enough result for 4-manifolds with boundary. In this talk, we show that if the involutive knot Floer homology of a knot K admits an invariant splitting, then the induced splitting if the knot Floer homology of P(K), for any pattern P, can be made invariant under its \iota_K involution. As an application, we construct an infinite family of examples of pairs of exotic contractible 4-manifolds which survive one stabilization, and observe that some of them are potential candidates for surviving two stabilizations.
 

Mon, 27 Nov 2023
15:30
L4

Costabilisation of telescopic spectral Lie algebras

Yuqing Shi
(Max Planck Institute for Mathematics)
Abstract

One can think of the stabilisation of an ∞-category as the ∞-category of objects that admit infinite deloopings. For example, the ∞-category of spectra is the stabilisation of the ∞-category of homotopy types. Costabilisation is the opposite notion of stabilisation, where we are interested in objects that allow infinite desuspensions. It is easy to see that the costabilisation of the ∞-category of homotopy types is trivial. Fix a prime number p. In this talk I will show that the costablisation of the ∞-category of T(h)-local spectral Lie algebras is equivalent to the ∞-category of T(h)-local spectra, where T(h) denotes a p-local telescope spectrum of height h. A key ingredient of the proof is to relate spectral Lie algebras to (spectral) Eₙ algebras via Koszul duality.
 

Mon, 20 Nov 2023
15:30
L4

Quantum field theory of Lorentzian manifolds

Alexander Schenkel
(University of Nottingham)
Abstract

In this talk I will provide an overview of our current research at the interface of quantum field theory (QFT), Lorentzian geometry and higher categorical structures. I will present operads which encode the rich algebraic structure of QFTs on Lorentzian manifolds and show that in low dimensions their algebras relate to familiar algebraic structures. Our operads share certain similarities with the little disk operads from topology, in particular they involve a homotopical localization at geometric embeddings related to ‘time evolution’. I will show that, in contrast to the topological context, this homotopical localization can be strictified in many important classes of examples, which is loosely speaking due to the 1-dimensional nature of time evolution in Lorentzian geometry. I will conclude by explaining how simple examples of such Lorentzian QFTs can be constructed from a homotopical generalization of the concept of Green’s operators for hyperbolic partial differential equations, which we call Green hyperbolic complexes. Throughout this talk, I will frequently comment on the similarities and differences between our approach, factorization algebras and functorial field theories.

Mon, 06 Nov 2023
15:30
L4

Understanding infinite groups via their actions on Banach spaces

Cornelia Drutu
(Oxford University)
Abstract

One way of studying infinite groups is by analysing
 their actions on classes of interesting spaces. This is the case
 for Kazhdan's property (T) and for Haagerup's property (also called a-T-menability),
 formulated in terms of actions on Hilbert spaces and relevant in many areas
(e.g. for the Baum-Connes conjectures, in combinatorics, for the study of expander graphs, in ergodic theory, etc.)
 
Recently, these properties have been reformulated for actions on Banach spaces,
with very interesting results. This talk will overview some of these reformulations
 and their applications. Part of the talk is on joint work with Ashot Minasyan and Mikael de la Salle, and with John Mackay.
 

Mon, 30 Oct 2023
15:30
L4

Quantitative implications of positive scalar curvature.

Thomas RICHARD
(Université Paris Est Créteil)
Abstract

Until the 2010’s the only « comparison geometry » result for compact Riemannian manifolds (M^n,g) with scal≥n(n-1) was Greene’s upper bound on the injectivity radius. Moreover, it is known that classical metric invariants (volume, diameter) cannot be controlled by a lower bound on the scalar curvature alone. It has only recently been discovered that some more subtle invariants, such as 2-systoles, can be controlled under a lower bounds on scal provided M has enough topology. We will present some results of Bray-Brendle-Neves (in dim 3), Zhu (in dim≤7) for S^2xT^(n-2), some version for S^2xS^2 and some conjecture with more general topology which we show to hold true under the additional assumption of Kaehlerness.

Mon, 23 Oct 2023
15:30
L4

Khovanov homology and the Fukaya category of the three-punctured sphere

Claudius Zibrowius
(Durham University)
Abstract

About 20 years ago, Dror Bar-Natan described an elegant generalisation
of Khovanov homology to tangles with any number of endpoints, by
considering certain quotients of two-dimensional relative cobordism
categories.  I claim that these categories are in general not
well-understood (not by me in any case).  However, if we restrict to
tangles with four endpoints, things simplify and Bar-Natan's category
turns out to be closely related to the wrapped Fukaya category of the
four-punctured sphere.  This relationship gives rise to a symplectic
interpretation of Khovanov homology that is useful both for doing
calculations and for proving theorems.  I will discuss joint work in
progress with Artem Kotelskiy and Liam Watson where we investigate what
happens when we fill in one of the punctures.