Fri, 21 Feb 2025

13:00 - 14:00
Quillen Room

Hilbert’s Fourteenth problem and the finite generation ideal of Daigle and Freudenberg’s counterexample

Simon Hart
(University of York)
Abstract

Hilbert’s fourteenth problem is concerned with whether invariant rings under algebraic group actions are finitely generated. A number of examples have been constructed since the mid-20th century which demonstrate that this is not always the case. However such examples by their nature are difficult to construct, and we know little about their underlying structure. This talk aims to provide an introduction to the topic of Hilbert’s fourteenth problem, as well as the finite generation ideal - a key tool used to further understand these counterexamples. We focus particularly on the example constructed by Daigle and Freudenberg at the turn of the 21st century, and describe the work undertaken to compute the finite generation ideal of this example. 

Fri, 21 Feb 2025
12:00
L5

Tubings of rooted trees: resurgence and multiple insertion places

Karen Yeats
(University of Waterloo)
Abstract

I will explain about how tubings of rooted trees can solve Dyson-Schwinger equations, and then summarize the two newer results in this direction, how to incorporate distinct insertion places and how when the Mellin transform is a reciprocal of a polynomial with rational roots, then one can use combinatorial techniques to obtain a system of differential equations that is perfectly suited to resurgent analysis.

Based on arXiv:2408.15883 (with Michael Borinsky and Gerald Dunne) and arXiv:2501.12350 (with Nick Olson-Harris).

Fri, 21 Feb 2025

11:00 - 12:00
L4

Epithelial-mesenchymal plasticity at scale: AI-powered insights from single cells and spatial transcriptomics

Prof Maria Secrier
(Department of Genetics, Evolution and Environment University College London)
Abstract

The epithelial to mesenchymal transition (EMT) is a key cellular process underlying cancer progression, with multiple intermediate states whose molecular hallmarks remain poorly characterized. In this talk, I will describe AI-powered and ecology-inspired methods recently developed by us to provide a multi-scale view of the epithelial-mesenchymal plasticity in cancer from single cell and spatial transcriptomics data. First, we employed a large language model similar to the one underlying chatGPT but tailored for biological data (inspired by scBERT methodology), to predict individual stable states within the EMT continuum in single cell data and dissect the regulatory processes governing these states. Secondly, we leveraged spatial transcriptomics of breast cancer tissue to delineate the spatial relationships between cancer cells occupying distinct states within the EMT continuum and various hallmarks of the tumour microenvironment. We introduce a new tool, SpottedPy, that identifies tumour hotspots within spatial transcriptomics slides displaying enrichment in processes of interest, including EMT, and explores the distance between these hotspots and immune/stromal-rich regions within the broader environment at flexible scales. We use this method to delineate an immune evasive quasi-mesenchymal niche that could be targeted for therapeutic benefit. Our insights may inform strategies to counter immune evasion enabled by EMT and offer an expanded view of the coupling between EMT and microenvironmental plasticity in breast cancer.

Thu, 20 Feb 2025
17:00
L6

Complete non-compact $\Spin(7)$-manifolds from $T^2$-bundles over asymptotically conical Calabi Yau manifolds

Nico Cavalleri
(UCL)
Abstract

We develop a new construction of complete non-compact 8-manifolds with holonomy equal to $\Spin(7)$. As a consequence of the holonomy reduction, these manifolds are Ricci-flat. These metrics are built on the total spaces of principal $T^2$-bundles over asymptotically conical Calabi Yau manifolds. The resulting metrics have a new geometry at infinity that we call asymptotically $T^2$-fibred conical ($AT^2C$) and which generalizes to higher dimensions the ALG metrics of 4-dimensional hyperkähler geometry. We use the construction to produce infinite diffeomorphism types of $AT^2C$ $\Spin(7)$-manifolds and to produce the first known example of complete toric $\Spin(7)$-manifold.

Thu, 20 Feb 2025

17:00 - 18:00
L3

Ax-Kochen/Ershov principles in positive characteristic

Franziska Jahnke
(University of Münster)
Abstract

A major open problem in the model theory of valued fields is to gain an understanding of the first-order theory of the power series field F((t)), where F denotes a finite field. For sufficiently "nice" henselian valued fields, the Ax-Kochen/Ershov philosophy allows to reduce questions of elementary equivalence and elementary embeddings to the analogous questions about the value group and residue field (or related structures). In my talk, I will present a new such principle which applies in particular to a large class of algebraic extensions of F((t)), albeit not to F((t)) itself. The talk is based on joint work with Konstantinos Kartas and Jonas van der Schaaf.

Thu, 20 Feb 2025
16:00
L5

E-Gamma Divergence: Its Properties and Applications in Differential Privacy and Mixing Times

Behnoosh Zamanlooy
(McMaster University)
Further Information

Please join us outside the lecture room from 15:30 for refreshments.

Abstract

We investigate the strong data processing inequalities of contractive Markov Kernels under a specific f-divergence, namely the E-gamma-divergence. More specifically, we characterize an upper bound on the E-gamma-divergence between PK and QK, the output distributions of contractive Markov kernel K, in terms of the E-gamma-divergence between the corresponding input distributions P and Q. Interestingly, the tightest such upper bound turns out to have a non-multiplicative form. We apply our results to derive new bounds for the local differential privacy guarantees offered by the sequential application of a privacy mechanism to data and we demonstrate that our framework unifies the analysis of mixing times for contractive Markov kernels.

Thu, 20 Feb 2025
16:00
Lecture Room 4

Close fields and the local Langlands correspondence

Daniel Li Huerta
(MPIM Bonn/MIT)
Abstract

There is an idea, going back to work of Krasner, that p-adic fields tend to function fields as absolute ramification tends to infinity. We will present a new way of rigorizing this idea, as well as give applications to the local Langlands correspondence of Fargues–Scholze.

Thu, 20 Feb 2025

14:00 - 15:00
(This talk is hosted by Rutherford Appleton Laboratory)

Integrate your residuals while solving dynamic optimization problems

Eric Kerrigan
(Imperial College London)
Abstract

 Many optimal control, estimation and design problems can be formulated as so-called dynamic optimization problems, which are optimization problems with differential equations and other constraints. State-of-the-art methods based on collocation, which enforce the differential equations at only a finite set of points, can struggle to solve certain dynamic optimization problems, such as those with high-index differential algebraic equations, consistent overdetermined constraints or problems with singular arcs. We show how numerical methods based on integrating the differential equation residuals can be used to solve dynamic optimization problems where collocation methods fail. Furthermore, we show that integrated residual methods can be computationally more efficient than direct collocation.

This seminar takes place at RAL (Rutherford Appleton Lab). 

Thu, 20 Feb 2025
12:00
C6

Critical thresholds in pressureless Euler-Poisson equations with background states

Young-Pil Choi
(Yonsei Univeristy)
Abstract

In this talk, we discuss the critical threshold phenomena in a large class of one-dimensional pressureless Euler-Poisson (EP) equations with non-vanishing background states. First, we establish local-in-time well-posedness in appropriate regularity spaces, specifically involving negative Sobolev spaces, which are adapted to ensure the neutrality condition holds. We show that this negative homogeneous Sobolev regularity is necessary by proving an ill-posedness result in classical Sobolev spaces when this condition is absent. Next, we examine the critical threshold phenomena in pressureless EP systems that satisfy the neutrality condition. We show that, in the case of attractive forcing, the neutrality condition further restricts the sub-critical region, reducing it to a single line in the phase plane. Finally, we provide an analysis of the critical thresholds for repulsive EP systems with variable backgrounds. As an application, we analyze the critical thresholds for the damped EP system in the context of cold plasma ion dynamics, where the electron density is governed by the Maxwell-Boltzmann relation. This talk is based on joint work with Dong-ha Kim, Dowan Koo, and Eitan Tadmor.

Thu, 20 Feb 2025

12:00 - 13:00
L3

Advanced Effective Models in Elasticity

Claire Lestringant
(Sorbonne University)
Further Information

Dr Claire Lestringant explores new models for understanding the mechanics of thin structures under large deformations, used for example to understand morphogenesis in biological systems or for the design of multi-stable, reconfigurable space structures. She received a PhD in Mechanics from Université Pierre et Marie Curie in 2017 and worked as a post-doc in D. Kochmann’s group at ETH Zurich in Switzerland.

Abstract

I will discuss two classes of effective, macroscopic models in elasticity: (i) 1D models applicable to thin structures, and (ii) homogenized 2D or 3D continua applicable to materials with a periodic microstructure. In both systems, the separation of scales calls for the definition of macroscopic models that slave fine-scale fluctuations to an effective, macroscopic deformation field. I will show how such models can be established in a systematic and rigorous way based on a two-scale expansion that accounts for nonlinear and higher-order (i.e. deformation gradient) effects. I will further demonstrate that the resulting models accurately predict nonlinear effects, finite size effects and localization for a set of examples. Finally, I will discuss two challenges that arise when solving these effective models: (1) missed boundary layer effects and (2) negative stiffness associated with higher-order terms.

Thu, 20 Feb 2025

12:00 - 12:30
Lecture room 5

Unfiltered and Filtered Low-Regularity Approaches for Nonlinear Dispersive PDEs

Hang Li
(Laboratoire Jacques-Louis Lions, Sorbonne-Université, Paris)
Abstract

In this talk, I will present low-regularity numerical methods for nonlinear dispersive PDEs, with unfiltered schemes analyzed in Sobolev spaces and filtered schemes in discrete Bourgain spaces, offering effective handling of low-regularity and even rough solutions. I will highlight the significance of exploring structure-preserving low-regularity schemes, as this is a crucial area for further research.

Thu, 20 Feb 2025

11:00 - 12:00
C6

Translation varieties

Ehud Hrushovski
(University of Oxford)
Abstract

In algebraic geometry, the technique of dévissage reduces many questions to the case of curves. In difference and differential algebra, this is not the case, but the obstructions can be closely analysed. In difference algebra, they are difference varieties defined by equations of the form $\si(x)=g x$, determined by an action of an algebraic group and an element g of this group. This is joint work with Zoé Chatzidakis.

Wed, 19 Feb 2025
17:00
Lecture Theatre 1

The Mathematics of Wound Healing - Tanniemola Liverpool

Tanniemola Liverpool
(University of Bristol)
Further Information

Wound healing is a highly conserved process required for survival of an animal after tissue damage. Tannie will describe how we are beginning to use a combination of mathematics, physics and biology to disentangle some of the organising principles behind the complex orchestrated dynamics that lead to wound healing.

Tanniemola Liverpool is a Professor in the Applied Mathematics Institute of the School of Mathematics at Bristol.

Please email @email to register to attend in person.

The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Wednesday 12 March at 5-6pm and any time after (no need to register for the online version).

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Wed, 19 Feb 2025
16:00
L6

Graph manifolds and their Thurston norm

Alessandro Cigna
(King's College London)
Abstract

A classical approach to studying the topology of a manifold is through the analysis of its submanifolds. The realm of 3-manifolds is particularly rich and diverse, and we aim to explore the complexity of surfaces within a given 3-manifold. After reviewing the fundamental definitions of the Thurston norm, we will present a constructive method for computing it on Seifert fibered manifolds and extend this approach to graph manifolds. Finally, we will outline which norms can be realized as the Thurston norm of some graph manifold and examine their key properties.

Wed, 19 Feb 2025
11:00
L4

A new take on ergodicity of the stochastic 2D Navier-Stokes equations

Dr Jonas Tölle
(Aalto University)
Abstract

We establish general conditions for stochastic evolution equations with locally monotone drift and degenerate additive Lévy noise in variational formulation resulting in the existence of a unique invariant probability measure for the associated ergodic Markovian Feller semigroup. We prove improved moment estimates for the solutions and the e-property of the semigroup. Examples include the stochastic incompressible 2D Navier-Stokes equations, shear thickening stochastic power-law fluid equations, the stochastic heat equation, as well as, stochastic semilinear equations such as the 1D stochastic Burgers equation.

Joint work with Gerardo Barrera (IST Lisboa), https://arxiv.org/abs/2412.01381

Tue, 18 Feb 2025
16:00
L6

Fluctuations of the ground-state energy of the elastic manifold

Bertrand Lacroix-A-Chez-Toine
(Kings College London)
Abstract

In this talk I will consider properties of the disordered elastic manifold, describing an N-dimensional field u(x) defined for sites x of a d-dimensional lattice of linear size L. This prototypical model is used to describe interfaces in a wide range of physical systems [1]. I will consider properties of the ground-state energy for this model whose optimal configuration u_0(x) results from a compromise between the disorder which tend to favour sharp variations of the field and elastic interactions that smoothen them. I will study in particular the limit of large N>>1 and finite d which has been studied extensively in the physics literature (notably using the replica approach) [1,2] and has recently been considered in a series of paper by Ben Arous and Kivimae [3,4]. For this model, we compute exactly the large deviation function of the ground-state energy E_0, showing that it displays replica-symmetry breaking transitions. As an interesting outcome of this study, we show analytically the validity of the scaling law conjectured by Mezard and Parisi [2] for the variance of the ground-state energy. The latter relates the exponent of the variance Var(E_0)\sim L^{2\theta} such that \theta=2\zeta+d-2 with \zeta the exponent characterising the transverse fluctuations of the optimal configuration u_0(x), i.e.  (u_0(x)-u_0(x+y))^2\sim |y|^{2\zeta}. This work is done in collaboration with Y.V. Fyodorov (KCL) and P. Le Doussal (LPENS, CNRS).

 

[1] Giamarchi, T., & Le Doussal, P. (1998). Statics and dynamics of disordered elastic systems. In Spin glasses and random fields (pp. 321-356).

 

[2] Mézard, M., & Parisi, G. (1991). Replica field theory for random manifolds. Journal de Physique I1(6), 809-836.

 

[3] Ben Arous, G., & Kivimae, P. (2024). The Free Energy of the Elastic Manifold. arXiv preprint arXiv:2410.19094.

 

[4] Ben Arous, G., & Kivimae, P. (2024). The larkin mass and replica symmetry breaking in the elastic manifold. arXiv preprint arXiv:2410.22601.

Tue, 18 Feb 2025
16:00
C3

W*-superrigidity for group von Neumann algebras

Stefaan Vaes
(KU Leuven)
Abstract

A countable group G is said to be W*-superrigid if G can be entirely recovered from its ambient group von Neumann algebra L(G). I will present a series of joint works with Milan Donvil in which we establish new degrees of W*-superrigidity: isomorphisms may be replaced by virtual isomorphisms expressed by finite index bimodules, the group von Neumann algebra may be twisted by a 2-cocycle, the group G might have infinite center, or we may enlarge the category of discrete groups to the broader class of discrete quantum groups.

Tue, 18 Feb 2025
15:30
L4

Invariance of elliptic genus under wall-crossing

Henry Liu
(IPMU Tokyo)
Abstract

Elliptic genus, and its various generalizations, is one of the simplest numerical invariants of a scheme that one can consider in elliptic cohomology. I will present a topological condition which implies that elliptic genus is invariant under wall-crossing. It is related to Krichever-Höhn’s elliptic rigidity. Many applications are possible: to GIT quotients, moduli of sheaves, Donaldson-Thomas invariants, etc.

Tue, 18 Feb 2025
15:00
L6

Dynamical alternating groups and the McDuff property

David Kerr
Abstract

In operator algebra theory central sequences have long played a significant role in addressing problems in and around amenability, having been used both as a mechanism for producing various examples beyond the amenable horizon and as a point of leverage for teasing out the finer structure of amenable operator algebras themselves. One of the key themes on the von Neumann algebra side has been the McDuff property for II_1 factors, which asks for the existence of noncommuting central sequences and is equivalent, by a theorem of McDuff, to tensorial absorption of the unique hyperfinite II_1 factor. We will show that, for a topologically free minimal action of a countable amenable group on the Cantor set, the von Neumann algebra of the associated dynamical alternating group is McDuff. This yields the first examples of simple finitely generated nonamenable groups for which the von Neumann algebra is McDuff. This is joint work with Spyros Petrakos.

Tue, 18 Feb 2025

14:00 - 15:00
L4

Cube-root concentration of the chromatic number of $G(n,1/2)$ – sometimes

Oliver Riordan
(University of Oxford)
Abstract
A classical question in the theory of random graphs is 'how much does the chromatic number of $G(n,1/2)$ vary?' For example, roughly what is its standard deviation $\sigma_n$? An old argument of Shamir and Spencer gives an upper bound of $O(\sqrt{n})$, improved by a logarithmic factor by Alon. For general $n$, a result with Annika Heckel implies that $n^{1/2}$ is tight up to log factors. However, according to the 'zig-zag' conjecture $\sigma_n$ is expected to vary between $n^{1/4+o(1)}$ and $n^{1/2+o(1)}$ as $n$ varies. I will describe recent work with Rob Morris, building on work of Bollobás, Morris and Smith, giving an $O^*(n^{1/3})$ upper bound for certain values of $n$, the first bound beating $n^{1/2-o(1)}$, and almost matching the zig-zag conjecture for these $n$. The proof uses martingale methods, the entropy approach of Johansson, Kahn and Vu, the second moment method, and a new (we believe) way of thinking about the distribution of the independent sets in $G(n,1/2)$.
Tue, 18 Feb 2025
14:00
C4

Temporal graph reproduction with RWIG

Piet Van Mieghem
(Delft University of Technology)
Abstract

Our Random Walkers Induced temporal Graphs (RWIG) model generates temporal graph sequences based on M independent, random walkers that traverse an underlying graph as a function of time. Co-location of walkers at a given node and time defines an individual-level contact. RWIG is shown to be a realistic model for temporal human contact graphs.   

A key idea is that a random walk on a Markov graph executes the Markov process. Each of the M walkers traverses the same set of nodes (= states in the Markov graph), but with own transition probabilities (in discrete time) or rates (in continuous time). Hence, the Markov transition probability matrix Pj reflects the policy of motion of walker wj. RWIG is analytically feasible: we derive closed form solutions for the probability distribution of contact graphs.

Usually, human mobility networks are inferred through measurements of timeseries of contacts between individuals. We also discuss this “inverse RWIG problem”, which aims to determine the parameters in RWIG (i.e. the set of probability transfer matrices P1, P2, ..., PM and the initial probability state vectors s1[0], ...,sM[0] of walkers w1,w2, ...,wM in discrete time), given a timeseries of contact graphs.

This talk is based on the article:
Almasan, A.-D., Shvydun, S., Scholtes, I. and P. Van Mieghem, 2025, "Generating Temporal Contact Graphs Using Random Walkers", IEEE Transactions on Network Science and Engineering, to appear.


 

Tue, 18 Feb 2025
14:00
L6

On a geometric dimension growth conjecture

Yotam Hendel
(Ben Gurion University of the Negev)
Abstract

Let X be an integral projective variety of degree at least 2 defined over Q, and let B>0 an integer. The dimension growth conjecture, now proven in almost all cases following works of Browning, Heath-Brown, and Salberger, provides a certain uniform upper bound on the number of rational points of height at most B lying on X. 

Shifting to the geometric setting (where X may be defined over C(t)), the collection of C(t)-rational points lying on X of degree at most B naturally has the structure of an algebraic variety, which we denote by X(B). In ongoing work with Tijs Buggenhout and Floris Vermeulen, we uniformly bound the dimension and, when the degree of X is at least 6, the number of irreducible components  of X(B) of largest possible dimension​ analogously to dimension growth bounds. We do this by developing a geometric determinant method, and by using results on rational points on curves over function fields. 

Joint with Tijs Buggenhout and Floris Vermeulen.

Tue, 18 Feb 2025
13:00
L5

Homotopy algebras, quantum field theory and AKSZ-gravity

Leron Borsten
(University of Hertfordshire)
Abstract

We’ll begin by introducing homotopy algebras (assuming no background) and their intimate connection to quantum field theory, with a briefly summary of some applications: scattering amplitude recursion relations, colour-kinematics duality, and generalised asymptotic observables. We’ll then introduce (deformed) Alexandrov–Kontsevich–Schwarz–Zaboronsky theories as the paradigmatic example of this framework, before developing their applications to gravity in two, three and four dimensions.   

Mon, 17 Feb 2025
16:30
L4

Stable Free Boundaries in Dimension 3: Bernoulli and Allen--Cahn

Xavier Fernandez-Real
(EPFL)
Abstract
In this talk, we present a forthcoming work on the classification of global stable solutions to the Bernoulli problem in $\mathbb R^3$. In particular, this yields local universal curvature bounds for the free boundary for the local problem.
By means of this result, we prove the free boundary Allen--Cahn stability conjecture in dimension 3: global stable solutions to the free boundary analogue of the Allen--Cahn equation are one dimensional in dimension 3. This solves a long-standing conjecture in the free boundary case.

 
Mon, 17 Feb 2025
16:00
C6

Hoheisel's theorem on primes in short intervals via combinatorics

Jori Merikoski
(Oxford)
Abstract

Hoheisel's theorem states that there is some $\delta> 0$ and some $x_0>0$ such that for all $x > x_0$ the interval $[x,x+x^{1-\delta}]$ contains prime numbers. Classically this is proved using the Riemann zeta function and results about its zeros such as the zero-free region and zero density estimates. In this talk I will describe a new elementary proof of Hoheisel's theorem. This is joint work with Kaisa Matomäki (Turku) and Joni Teräväinen (Cambridge). Instead of the zeta function, our approach is based on sieve methods and ideas coming from additive combinatorics, in particular, the transference principle. The method also gives an L-function free proof of Linnik's theorem on the least prime in arithmetic progressions.

Mon, 17 Feb 2025
16:00
C6

TBC

Jori Merikowski
(University of Oxford)
Abstract

TBC

Mon, 17 Feb 2025
15:30
L5

Koszul duality and Calabi Yau strutures

Julian Holstein
(Universität Hamburg)
Abstract
I will talk about two aspects of Koszul duality. Firstly, Koszul duality for dg categories provides a way of modelling dg categories as certain curved coalgebras. This is a linearization of the correspondence of simplicial categories as simplicial sets (quasi-categories). Secondly, Koszul duality exchanges smooth and proper Calabi-Yau structures for dg categories and curved coalgebras. This is a generalization and conceptual explanation of the following phenomen: For a topological space X with the homotopy type of a finite complex having an oriented Poincaré duality structure (with local coefficients) is equivalent to a smooth Calabi-Yau structure on the dg algebra of chains on the based loop space of X.  This is joint work with Andrey Lazarev and with Manuel Rivera, respectively.
Mon, 17 Feb 2025
15:30
L3

Stochastic wave equations with constraints: well-posedness and Smoluchowski-Kramers diffusion approximation

Prof Zdzislaw Brzezniak
(University of York)
Abstract

I will discuss  the well-posedness of a class of stochastic second-order in time-damped evolution equations in Hilbert spaces, subject to the constraint that the solution lies on  the unit sphere. A specific example is provided by  the stochastic damped wave equation in a bounded domain of a $d$-dimensional Euclidean space, endowed with the Dirichlet boundary conditions, with the added constraint that the $L^2$-norm of the solution is equal to one. We introduce a small mass $\mu>0$ in front of the second-order derivative in time and examine the validity of the Smoluchowski-Kramers diffusion approximation. We demonstrate that, in the small mass limit, the solution converges to the solution of a stochastic parabolic equation subject to the same constraint. We further show that an extra noise-induced drift emerges, which  in fact does not account for the Stratonovich-to-It\^{o} correction term. This talk is based on joint research with S. Cerrai (Maryland), hopefully to be published in Comm Maths Phys.

Mon, 17 Feb 2025
14:15
L5

Curve counting and spaces of Cauchy-Riemann operators

Aleksander Doan
(University College London)
Abstract

It is a long-standing open problem to generalize sheaf-counting invariants of complex projective three-folds to symplectic manifolds of real dimension six. One approach to this problem involves counting  J-holomorphic curves  C, for a generic almost complex structure J, with weights depending on J. Various existing symplectic invariants (Gromov-Witten, Gopakumar-Vafa, Bai-Swaminathan) can be expressed as such weighted counts. In this talk, based on joint work with Thomas Walpuski, I will discuss a new construction of weights associated with curves and a closely related problem about the structure of the space of Cauchy-Riemann operators on  C.

Mon, 17 Feb 2025
13:00
L6

Introduction to the membrane theory of entanglement dynamics

Jiang Hanzhi
Abstract

The time evolution of quantum matter systems toward their thermal equilibria, characterized by their entanglement entropy (EE), is a question that permeates many areas of modern physics. The dynamic of EE in generic chaotic many-body systems has an effective description in terms of a minimal membrane described by its membrane tension function. For strongly coupled systems with a gravity dual, the membrane tension can be obtained by projecting the bulk Hubeny-Rangamani-Ryu-Takayanagi (HRT) surfaces to the boundary along constant infalling time. In this talk, I will introduce the membrane theory of entanglement dynamics, its generalization to 2d CFT, as well as several applications. Based on arXiv: 1803.10244 and arXiv: 2411.16542.

Fri, 14 Feb 2025
15:00
L4

Distance-from-flat persistent homology transforms

Nina Otter
(Inria Saclay)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract
The persistent homology transform (PHT) was introduced in the field of Topological Data Analysis about 10 years ago, and has since been proven to be a very powerful descriptor of Euclidean shapes. The PHT consists of scanning a shape from all possible directions and then computing the persistent homology of sublevel set filtrations of the respective height functions; this results in a sufficient and continuous descriptor of Euclidean shapes. 
 
In this talk I will introduce a generalisation of the PHT in which we consider arbitrary parameter spaces and sublevel-set filtrations with respect to any function. In particular, we study transforms, defined on the Grassmannian AG(m,n) of affine subspaces of n-dimensional Euclidean space, which allow to scan a shape by probing it with all possible affine m-dimensional subspaces P, for fixed dimension m, and by then computing persistent homology of sublevel-set filtrations of the function encoding the distance from the flat P. We call such transforms "distance-from-flat PHTs". I will discuss how these transforms generalise known examples, how they are sufficient descriptors of shapes and finally present their computational advantages over the classical persistent homology transform introduced by Turner-Mukherjee-Boyer. 
Fri, 14 Feb 2025

14:00 - 15:00
L1

What are employers looking for in mathematical graduates?

Jenny Roberts
(IMA)
Abstract

In this interactive session, Jenny Roberts from the Institute of Mathematics and its Applications will offer guidance on what employers are looking for in mathematical graduates, and how best to sell yourself for those jobs!

Fri, 14 Feb 2025

12:00 - 13:00
Quillen Room

Shifted twisted Yangians and even finite W-algebras

Lukas Tappeiner
(University of Bath)
Abstract

There is a well-known relationship between finite W-algebras and Yangians. The work of Rogoucy and Sorba on the "rectangular case" in type A eventually led Brundan and Kleshchev to introduce shifted Yangians, which surject onto the finite W-algebras for general linear Lie algebras. Thus, these W-algebras can be realised as truncated shifted Yangians. In parallel, the work of Ragoucy and then Brown showed that truncated twisted Yangians are isomorphic to the finite W-algebra associated to a rectangular nilpotent element in a Lie algebra of type B, C or D. For many years there has been a hope that this relationship can be extended to other nilpotent elements.

I will report on a joint work with Lewis Topley in which we introduced the shifted twisted Yangians, following the work of Lu-Wang-Zhang, and described Poisson isomorphisms between their truncated semiclassical degenerations and the functions Slodowy slices associated with even nilpotent elements in classical simple Lie algebras( which can be viewed as semiclassical W-algebras). I will also mention a work in progress with Lu-Peng-Topley-Wang which deals with the quantum analogue of our theorem.

I will also recall what Poisson algebras and (filtered) quantizations are and give a brief intro to Slodowy slices, finite W-algebras and Yangians so that the talk should be quite accessible.

Fri, 14 Feb 2025

11:00 - 12:00
L4

Computational investigation of single-scale and multi-scale heterogeneous immune responses during cancer evolution

Prof Raluca Eftimie
(Mathematics Laboratory Université de Franche-Comté, Besançon)
Abstract

Tumour microenvironment is characterised by heterogeneity at various scales: from various cell populations (immune cells, cancerous cells, ...) and various molecules that populate the microenvironment (cytokines, chemokines, extracellular vesicles, …); to phenotype heterogeneity inside the same cell population (e.g., immune cells with different phenotypes and different functions); as well as temporal heterogeneity in cells’ phenotypes (as cancer evolves through time) and spatial heterogeneity.
In this talk we overview some mathematical models and computational approaches developed to investigate different single-scale and multi-scale aspects related to heterogeneous immune responses during cancer evolution. Throughout the talk we emphasise the qualitative vs. quantitative results, and data availability across different scales

Thu, 13 Feb 2025
17:00
L3

The open core of NTP2 topological structures

Pablo Andujar Guerrero
(University of Leeds)
Abstract

The open core of a structure is the reduct generated by the open definable sets. Tame topological structures (e.g. o-minimal) are often inter-definable with their open core. Structures such as M = (ℝ,<, +, ℚ) are wild in the sense that they define a dense co-dense set. Still, M is NIP and its open core is o-minimal. In this talk, we push forward the thesis that the open core of an NTP2 (a generalization of NIP) topological structure is tame. Our main result is that, under suitable conditions, the open core has quantifier elimination (every definable set is constructible), and its definable functions are generically continuous.

Thu, 13 Feb 2025
16:00
Lecture Room 4

On the exceptional set in the abc conjecture

Joni Teräväinen
(University of Cambridge)
Abstract
The well known abc conjecture asserts that for any coprime triple of positive integers satisfying $a+b=c$, we have $c<K_{\varepsilon} \mathrm{rad}(abc)^{1+\varepsilon}$, where $\mathrm{rad}$ is the squarefree radical function. 
 
In this talk, I will discuss a proof giving the first power-saving improvement over the trivial bound for the number of exceptions to this conjecture. The proof is based on a combination of various methods for counting rational points on curves, and a combinatorial analysis to patch these cases together.
 
This is joint work with Tim Browning and Jared Lichtman.
Thu, 13 Feb 2025

14:00 - 15:00
Lecture Room 3

Global Optimization with Hamilton-Jacobi PDEs

Dante Kalise
(Imperial College London)
Abstract

We introduce a novel approach to global optimization  via continuous-time dynamic programming and Hamilton-Jacobi-Bellman (HJB) PDEs. For non-convex, non-smooth objective functions,  we reformulate global optimization as an infinite horizon, optimal asymptotic stabilization control problem. The solution to the associated HJB PDE provides a value function which corresponds to a (quasi)convexification of the original objective.  Using the gradient of the value function, we obtain a  feedback law driving any initial guess towards the global optimizer without requiring derivatives of the original objective. We then demonstrate that this HJB control law can be integrated into other global optimization frameworks to improve its performance and robustness. 

Thu, 13 Feb 2025
13:00
N3.12

The Penrose Inequality: An Application of Geometric PDEs to Physics

Christopher Wright
Abstract

In this talk, I will discuss a conjecture of Penrose, which asserts a lower bound on the mass of a spacetime in terms of the area of a suitable horizon. Whilst Penrose presented a physical motivation for this inequality in the 1970s, the only proofs heavily rely upon PDE arguments, and in particular the use of geometric flows. I hope to show in this talk, through this concrete example (and without unpleasant technical details!), how ideas from geometric PDE theory can be helpful in obtaining results in physics.
 

Thu, 13 Feb 2025

12:00 - 13:00
L3

Various

Various Speakers from OCIAM Year 2 Graduates
(Mathematical Institute)
Thu, 13 Feb 2025

12:00 - 12:30
Lecture room 5

High-order and sparsity-promoting Stokes elements

Pablo Brubeck
(Mathematical Institute (University of Oxford))
Abstract
One of the long-standing challenges of numerical analysis is the efficient and stable solution of incompressible flow problems (e.g. Stokes). It is fairly non-trivial to design a discretization that yields a well-posed (invertible) linear saddle-point problem. Additionally requiring that the discrete solution preserves the divergence-free constraint introduces further difficulty. In this talk, we present new finite elements for incompressible flow using high-order piecewise polynomials spaces. These elements exploit certain orthogonality relations to reduce the computational cost and storage of augmented Lagrangian preconditioners. We achieve a robust and scalable solver by combining this high-order element with a domain decomposition method, and a lower-order element as the coarse space. We illustrate our solver with numerical examples in Firedrake.
Thu, 13 Feb 2025
12:00
L3

OCIAM TBC

OCIAM TBC
Thu, 13 Feb 2025

11:00 - 12:00
C5

Around Siu inequality

Michał Szachniewicz
(University of Oxford)
Abstract

I will talk about the connections between the Siu inequality and existence of the model companion for GVFs. The talk will be partially based on a joint work with Antoine Sedillot.

Wed, 12 Feb 2025
16:00
L6

Rank-one symmetric spaces and their quasiisometries

Paula Heim
(University of Oxford)
Abstract

The hyperbolic plane and its higher-dimensional analogues are well-known
objects. They belong to a larger class of spaces, called rank-one
symmetric spaces, which include not only the hyperbolic spaces but also
their complex and quaternionic counterparts, and the octonionic
hyperbolic plane. By a result of Pansu, two of these families exhibit
strong rigidity properties with respect to their self-quasiisometries:
any self-quasiisometry of a quaternionic hyperbolic space or the
octonionic hyperbolic plane is at uniformly bounded distance from an
isometry. The goal of this talk is to give an overview of the rank-one
symmetric spaces and the tools used to prove Pansu's rigidity theorem,
such as the subRiemannian structure of their visual boundaries and the
analysis of quasiconformal maps.

Wed, 12 Feb 2025
16:00
Lecture Room 4

Weak integrality of finitely presented groups

Hélène Esnault
(Freie Universität Berlin)
Abstract

This is  a notion we defined with Johan de Jong. If a finitely presented group  is the topological fundamental group of a smooth quasi-projective complex variety, then we prove that it is weakly integral. To this aim we use the Langlands program (both arithmetic to produce companions and geometric to use de Jong’s conjecture). On the other hand there are finitely presented groups which are not weakly integral (Breuillard). So this notion is an obstruction.
 

Tue, 11 Feb 2025
16:00

Derivative moments of CUE characteristic polynomials and the Riemann zeta function

Nick Simm
(University of Sussex)
Abstract
I will discuss recent work on the derivative of the characteristic polynomial from the Circular Unitary Ensemble. The main focus is on the calculation of moments with values of the spectral parameter z inside the unit disc. We investigate three asymptotic regimes depending on the distance of z to the unit circle, as the size of the matrices tends to infinity. I will also discuss some corresponding results for the derivative of the Riemann zeta function. This is joint work with Fei Wei (Sussex).



 

Tue, 11 Feb 2025
16:00
C3

Homology and K-theory for self-similar group actions

Alistair Miller
(University of Southern Denmark)
Abstract

Self-similar groups are groups of automorphisms of infinite rooted trees obeying a simple but powerful rule. Under this rule, groups with exotic properties can be generated from very basic starting data, most famously the Grigorchuk group which was the first example of a group with intermediate growth.

Nekrashevych introduced a groupoid and a C*-algebra for a self-similar group action on a tree as models for some underlying noncommutative space for the system. Our goal is to compute the K-theory of the C*-algebra and the homology of the groupoid. Our main theorem provides long exact sequences which reduce the problems to group theory. I will demonstrate how to apply this theorem to fully compute homology and K-theory through the example of the Grigorchuk group.

This is joint work with Benjamin Steinberg.

Tue, 11 Feb 2025
15:30
L4

Equivariant Floer theory for symplectic C*-manifolds

Alexander Ritter
(Oxford)
Abstract
The talk will be on recent progress in a series of joint papers with Filip Živanović, about a large class of non-compact symplectic manifolds, which includes semiprojective toric varieties, quiver varieties, and conical symplectic resolutions of singularities. These manifolds admit a Hamiltonian circle action which is part of a pseudo-holomorphic action of a complex torus. The symplectic form on these spaces is highly non-exact, yet we can make sense of Hamiltonian Floer cohomology for functions of the moment map of the circle action. We showed that Floer theory induces a filtration by ideals on quantum cohomology. I will explain recent progress on equivariant Floer cohomology for these spaces, in which case we obtain a filtration on equivariant quantum cohomology. If time permits, I will also mention a presentation of symplectic cohomology and quantum cohomology for semiprojective toric varities.
Tue, 11 Feb 2025
15:00
L6

Fixed points, splittings and division rings

Ismael Morales
Abstract

Let G be a free group of rank N, let f be an automorphism of G and let Fix(f) be the corresponding subgroup of fixed points. Bestvina and Handel showed that the rank of Fix(f) is at most N, for which they developed the theory of train track maps on free groups. Different arguments were provided later on by Sela, Paulin and Gaboriau-Levitt-Lustig. In this talk, we present a new proof which involves the Linnell division ring of G. We also discuss how our approach relates to previous ones and how it gives new insight into variations of the problem.

Tue, 11 Feb 2025
14:00
C4

Physical Network Constraints Define the Lognormal Architecture of the Brain's Connectome

Daniel Barabasi
(Harvard University )
Abstract

While the brain has long been conceptualized as a network of neurons connected by synapses, attempts to describe the connectome using established models in network science have yielded conflicting outcomes, leaving the architecture of neural networks unresolved. Here, we analyze eight experimentally mapped connectomes, finding that the degree and the strength distribution of the underlying networks cannot be described by random nor scale-free models. Rather, the node degrees and strengths are well approximated by lognormal distributions, whose emergence lacks a mechanistic model in the context of networks. Acknowledging the fact that the brain is a physical network, whose architecture is driven by the spatially extended nature of its neurons, we analytically derive the multiplicative process responsible for the lognormal neuron length distribution, arriving to a series of empirically falsifiable predictions and testable relationships that govern the degree and the strength of individual neurons. The lognormal network characterizing the connectome represents a novel architecture for network science, that bridges critical gaps between neural structure and function, with unique implications for brain dynamics, robustness, and synchronization.

Tue, 11 Feb 2025

14:00 - 15:00
L4

Lower bounds for incidences and Heilbronn's triangle problem

Dmitrii Zakharov
(Massachusetts Institute of Technology)
Abstract

Upper bounds on the number of incidences between points and lines, tubes, and other geometric objects, have many applications in combinatorics and analysis. On the other hand, much less is known about lower bounds. We prove a general lower bound for the number of incidences between points and tubes in the plane under a natural spacing condition. In particular, if you take $n$ points in the unit square and draw a line through each point, then there is a non-trivial point-line pair with distance at most $n^{-2/3+o(1)}$. This quickly implies that any $n$ points in the unit square define a triangle of area at most $n^{-7/6+o(1)}$, giving a new upper bound for the Heilbronn's triangle problem.

Joint work with Alex Cohen and Cosmin Pohoata.