Thu, 29 Oct 2020
14:00
Virtual

An algorithm for constructing efficient discretizations for integral equations near corners

Kirill Serkh
(University of Toronto)
Abstract

It has long been known that many elliptic partial differential equations can be reformulated as Fredholm integral equations of the second kind on the boundaries of their domains. The kernels of the resulting integral equations are weakly singular, which has historically made their numerical solution somewhat onerous, requiring the construction of detailed and typically sub-optimal quadrature formulas. Recently, a numerical algorithm for constructing generalized Gaussian quadratures was discovered which, given 2n essentially arbitrary functions, constructs a unique n-point quadrature that integrates them to machine precision, solving the longstanding problem posed by singular kernels.

When the domains have corners, the solutions themselves are also singular. In fact, they are known to be representable, to order n, by a linear combination (expansion) of n known singular functions. In order to solve the integral equation accurately, it is necessary to construct a discretization such that the mapping (in the L^2-sense) from the values at the discretization points to the corresponding n expansion coefficients is well-conditioned. In this talk, we present exactly such an algorithm, which is optimal in the sense that, given n essentially arbitrary functions, it produces n discretization points, and for which the resulting interpolation formulas have condition numbers extremely close to one.

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send email to @email.

Thu, 29 Oct 2020

14:00 - 15:00
Virtual

6d (2,0) SCFT - part 1

Marieke Van Beest and Pietro Ferrero
((Oxford University))
Wed, 28 Oct 2020

17:00 - 18:00

Oxford Mathematics Online Public Lecture: David Sumpter - How Learning Ten Equations Can Improve Your Life

Further Information

Is there a secret formula for becoming rich? Or for happiness? Or for becoming popular? Or for self-confidence and good judgement? David Sumpter answer these questions with an emphatic ‘Yes!' All YOU need are The Ten Equations.

In this lecture David will reveal three of these: the confidence equation that helps gamblers know when they have a winning strategy; the influencer equation that shapes our social interactions; and the learning equation that YouTube used to get us addicted to their videos. A small group of mathematicians have used these equations to revolutionise our world. Now you can use them too to better manage your time and make money, have a more balanced approach to your popularity and even to become a nicer person.

To order the book 'The Ten Equations That Rule the World' signed by David Sumpter from Blackwell's Bookshop, email @email by 15 November and they will provide you with all the information you need.

David Sumpter is Professor of Applied Mathematics at the University of Uppsala, Sweden.

Watch online (no need to register):
Oxford Mathematics Twitter
Oxford Mathematics Facebook
Oxford Mathematics Livestream
Oxford Mathematics YouTube

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

[[{"fid":"59746","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-square","data-delta":"1"}}]]

Wed, 28 Oct 2020
10:00
Virtual

(Beyond) Quasi-isometric Rigidity of Lattices in Lie Groups

Ido Grayevsky
(University of Oxford)
Abstract

'Quasi-isometric rigidity' in group theory is the slogan for questions of the following nature: let A be some class of groups (e.g. finitely presented groups). Suppose an abstract group H is quasi-isometric to a group in A: does it imply that H is in A? Such statements link the coarse geometry of a group with its algebraic structure. 

 

Much is known in the case A is some class of lattices in a given Lie group. I will present classical results and outline ideas in their proofs, emphasizing the geometric nature of the proofs. I will focus on one key ingredient, the quasi-flat rigidity, and discuss some geometric objects that come into play, such as neutered spaces, asymptotic cones and buildings. I will end the talk with recent developments and possible generalizations of these results and ideas.

Tue, 27 Oct 2020

15:30 - 16:30
Virtual

Delocalization transition for critical Erdös-Rényi graphs

Antti Knowles
(Université de Genève)
Further Information

Further Information: 

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

We analyse the eigenvectors of the adjacency matrix of a critical Erdös-Rényi graph G(N,d/N), where d is of order \log N. We show that its spectrum splits into two phases: a delocalized phase in the middle of the spectrum, where the eigenvectors are completely delocalized, and a semilocalized phase near the edges of the spectrum, where the eigenvectors are essentially localized on a small number of vertices. In the semilocalized phase the mass of an eigenvector is concentrated in a small number of disjoint balls centred around resonant vertices, in each of which it is a radial exponentially decaying function. The transition between the phases is sharp and is manifested in a discontinuity in the localization exponents of the eigenvectors. Joint work with Johannes Alt and Raphael Ducatez.

Tue, 27 Oct 2020
15:30
Virtual

Further progress towards Hadwiger's conjecture

Luke Postle
(Waterloo)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In 1943, Hadwiger conjectured that every graph with no Kt minor is $(t-1)$-colorable for every $t\geq 1$. In the 1980s, Kostochka and Thomason independently proved that every graph with no $K_t$ minor has average degree $O(t(\log t)^{1/2})$ and hence is $O(t(\log t)^{1/2)}$-colorable. Recently, Norin, Song and I showed that every graph with no $K_t$ minor is $O(t(\log t)^\beta)$-colorable for every $\beta > 1/4$, making the first improvement on the order of magnitude of the $O(t(\log t)^{1/2})$ bound. Here we show that every graph with no $K_t$ minor is $O(t (\log t)^\beta)$-colorable for every $\beta > 0$; more specifically, they are $O(t (\log \log t)^6)$-colorable.

Tue, 27 Oct 2020

14:15 - 15:15
Virtual

Parameterising unramified nilpotent orbits using dual Springer parameters

Emile Okada
(Oxford University)
Abstract

The nilpotent orbits of a Lie algebra play a central role in modern representation theory notably cropping up in the Springer correspondence and the fundamental lemma. Their behaviour when the base field is algebraically closed is well understood, however the p-adic case which arises in the study of admissible representations of p-adic groups is considerably more subtle. Their classification was only settled in the late 90s when Barbasch and Moy ('97) and Debacker (’02) developed an ‘affine Bala-Carter’ theory using the Bruhat-Tits building. In this talk we combine this work with work by Sommers and McNinch to provide a parameterisation of nilpotent orbits over a maximal unramified extension of a p-adic field in terms of so called dual Springer parameters and outline an application of this result to wavefront sets.

Tue, 27 Oct 2020
14:00
Virtual

The geometry of random minimal factorizations of a long cycle

Igor Kortchemski
(Ecole Polytechnique)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We will be interested in the structure of random typical minimal factorizations of the n-cycle into transpositions, which are factorizations of $(1,\ldots,n)$ as a product of $n-1$ transpositions. We shall establish a phase transition when a certain amount of transpositions have been read one after the other. One of the main tools is a limit theorem for two-type Bienaymé-Galton-Watson trees conditioned on having given numbers of vertices of both types, which is of independent interest. This is joint work with Valentin Féray.

Tue, 27 Oct 2020

14:00 - 15:00
Virtual

Atomic subgraphs and the statistical mechanics of networks

Anatol Wegner
(University College London)
Abstract

We develop random graph models where graphs are generated by connecting not only pairs of vertices by edges but also larger subsets of vertices by copies of small atomic subgraphs of arbitrary topology. This allows the for the generation of graphs with extensive numbers of triangles and other network motifs commonly observed in many real world networks. More specifically we focus on maximum entropy ensembles under constraints placed on the counts and distributions of atomic subgraphs and derive general expressions for the entropy of such models. We also present a procedure for combining distributions of multiple atomic subgraphs that enables the construction of models with fewer parameters. Expanding the model to include atoms with edge and vertex labels we obtain a general class of models that can be parametrized in terms of basic building blocks and their distributions that includes many widely used models as special cases. These models include random graphs with arbitrary distributions of subgraphs, random hypergraphs, bipartite models, stochastic block models, models of multilayer networks and their degree corrected and directed versions. We show that the entropy for all these models can be derived from a single expression that is characterized by the symmetry groups of atomic subgraphs.

Tue, 27 Oct 2020
12:00
Virtual

Gravitational Anomalies in string-inspired cosmological models, De Sitter space times, Leptogenesis and Axion Dark Matter.

Nick Mavromatos
(Kings College London)
Abstract

I discuss a ``running vacuum cosmological model'' of a string-inspired
Universe, in which gravitational anomalies play an important role, in
inducing, through condensates of primordial gravitational waves, an early de
Sitter inflationary phase, during which constant (in cosmic time)
backgrounds of the antisymmetric (Kalb-Ramond (KR)) tensor field of the
massless bosonic string multiplet remain undiluted until the exit from
inflation and well into the subsequent radiation era. During the radiation
phase, such backgrounds, which violate spontaneously Lorentz and CPT
symmetry, induce lepton asymmetry (Leptogenesis) in models involving
right-handed neutrinos. Chiral matter is generated in the model at the exit
phase of inflation, and this leads to the cancellation of gravitational
anomalies in the post inflationary universe. During the radiation era, non
perturbative effects can also be held responsible for the generation of a

potential for the gravitational axion, associated in (3+1)-dimensions with
the field strength of the KR field, which can thus play the role of a Dark
Matter component. In the talk, I discuss the underlying formalism and argue
in favour of the consistency of a theory with gravitational anomalies in the
early Universe. I connect the energy density of such a universe with that of
the so called ``running-vacuum model'' in which the vacuum energy density is
expressed in terms of even powers of the Hubble parameter, which in general
depends on cosmic time. The gravitational-wave condensate induces a term in
the energy density  proportional to the fourth-power of the Hubble parameter
H^4 , which is responsible for the early de Sitter phase, during which the
Hubble parameter is approximately a constant. I also discuss briefly a
connection of this string inspired model with the Swampland and weak gravity
conjectures and explain how consistency with such conjectures is achieved,
despite the fact that the model is compatible with slow-roll inflationary
phenomenology.

Mon, 26 Oct 2020

16:00 - 17:00
Virtual

The initial boundary value problem for the Einstein equations with totally geodesic timelike boundary

Grigorios Fournodavlos
(Sorbonne Université)
Abstract

Unlike the classical Cauchy problem in general relativity, which has been well-understood since the pioneering work of Y. Choquet-Bruhat (1952), the initial boundary value problem for the Einstein equations still lacks a comprehensive treatment. In particular, there is no geometric description of the boundary data yet known, which makes the problem well-posed for general timelike boundaries. Various gauge-dependent results have been established. Timelike boundaries naturally arise in the study of massive bodies, numerics, AdS spacetimes. I will give an overview of the problem and then present recent joint work with Jacques Smulevici that treates the special case of a totally geodesic boundary.

Mon, 26 Oct 2020

16:00 - 17:00
Virtual

From curves to arithmetic geometry: Parshin's trick

Jay Swar
Abstract

In 1983, Faltings proved Mordell's conjecture on the finiteness of $K$-points on curves of genus >1 defined over a number field $K$ by proving the finiteness of isomorphism classes of isogenous abelian varieties over $K$. The "first" major step from Mordell's conjecture to what Faltings did came 15 years earlier when Parshin showed that a certain conjecture of Shafarevich would imply Mordell's conjecture. In this talk, I'll focus on motivating and sketching Parshin's argument in an accessible manner and provide some heuristics on how to get from Faltings' finiteness statement to the Shafarevich conjecture.

Mon, 26 Oct 2020

16:00 - 17:00

Diffusion Limit of Poisson Limit-Order Book Models

STEVE SHREVE
(Carnegie Mellon Univeristy)
Abstract

Trading of financial instruments has largely moved away from floor trading and onto electronic exchanges. Orders to buy and sell are queued at these exchanges in a limit-order book. While a full analysis of the dynamics of a limit-order book requires an understanding of strategic play among multiple agents, and is thus extremely complex, so-called zero-intelligence Poisson models have been shown to capture many of the statistical features of limit-order book evolution. These models can be addressed by traditional queueing theory techniques, including Laplace transform analysis. In this work, we demonstrate in a simple setting that another queueing theory technique, approximating the Poisson model by a diffusion model identified as the limit of a sequence of scaled Poisson models, can also be implemented. We identify the diffusion limit, find an embedded semi-Markov model in the limit, and determine the statistics of the embedded semi-Markov model. Along the way, we introduce and study a new type of process, a generalization of skew Brownian motion that we call two-speed Brownian motion.

Mon, 26 Oct 2020
15:45
Virtual

Homological duality: jumping loci, propagation, realization

Laurentiu Maxim
(University of Wisconsin-Madison)
Abstract

I will discuss recent progress on the study of homological duality properties of complex algebraic manifolds, with a view towards the projective Singer-Hopf conjecture. (Joint work with Y. Liu and B. Wang.)

Mon, 26 Oct 2020

14:15 - 15:15
Virtual

Coproducts in the cohomological DT theory of 3-Calabi-Yau completions

Ben Davison
(Edinburgh)
Abstract
Given a suitably friendly category D we can take the 3-Calabi Yau completion of D and obtain a 3-Calabi-Yau category E. The archetypal example has D as the category of coherent sheaves on a smooth quasiprojective surface, then E is the category of coherent sheaves on the total space of the canonical bundle - a quasiprojective 3CY variety. The moduli stack of semistable objects in the 3CY completion E supports a vanishing cycle-type sheaf, the hypercohomology of which is the basic object in the study of the DT theory of E. Something extra happens when our input category is itself 2CY: examples include the category of local systems on a Riemann surface, the category of coherent sheaves on a K3/Abelian surface, the category of Higgs bundles on a smooth complete curve, or the category of representations of a preprojective algebra. In these cases, the DT cohomology of E carries a cocommutative coproduct. I'll also explain how this interacts with older algebraic structures in cohomological DT theory to provide a geometric construction of both well-known and new quantum groups.
Mon, 26 Oct 2020
12:45
Virtual

Discrete and higher-form symmetries from wrapped M5-branes

Federico Bonetti
(University of Oxford)
Abstract

A vast class of 4d SCFTs can be engineered by wrapping a stack of M5-branes on a Riemann surface. These SCFTs can exhibit a variety of global symmetries, continuous or discrete, including both ordinary (0-form) symmetries, as well as generalized (higher-form) symmetries. In this talk, I will focus on discrete and higher-form symmetries in setups with M5-branes on a smooth Riemann surface. Adopting a holographic point of view, a crucial role is played by topological mass terms in 5d supergravity (similar to BF terms in four dimensions). I will discuss how the global symmetries of the boundary 4d theory are inferred from the 5d topological terms, and how one can compute 4d ‘t Hooft anomalies involving discrete and/or higher-form symmetries.

Fri, 23 Oct 2020
16:00
Virtual

North meets South colloquium

Martin Gallauer and Zhaohe Dai
Abstract

Martin Gallauer (North): "Algebraic algebraic geometry"
If a space is described by algebraic equations, its algebraic invariants are endowed with additional structure. I will illustrate this with some simple examples, and speculate on the meaning of the title of my talk.

Zhaohe Dai (South): "Two-dimensional material bubbles"
Two-dimensional (2D) materials are a relatively new class of thin sheets consisting of a single layer of covalently bonded atoms and have shown a host of unique electronic properties. In 2D material electronic devices, however, bubbles often form spontaneously due to the trapping of air or ambient contaminants (such as water molecules and hydrocarbons) at sheet-substrate interfaces. Though they have been considered to be a nuisance, I will discuss that bubbles can be used to characterize 2D materials' bending rigidity after the pressure inside being well controlled. I will then focus on bubbles of relatively large deformations so that the elastic tension could drive the radial slippage of the sheet on its substrate. Finally, I will discuss that the consideration of such slippage is vital to characterize the sheet's stretching stiffness and gives new opportunities to understand the adhesive and frictional interactions between the sheet and various substrates that it contacts.
 

Fri, 23 Oct 2020

15:00 - 16:00
Virtual

Sampling and homology via bottlenecks

Oliver Gäfvert
(KTH Stockholm)
Abstract

In this talk I will present an efficient algorithm to produce a provably dense sample of a smooth compact algebraic variety. The procedure is partly based on computing bottlenecks of the variety. Using geometric information such as the bottlenecks and the local reach we also provide bounds on the density of the sample needed in order to guarantee that the homology of the variety can be recovered from the sample.

Fri, 23 Oct 2020
15:00
Virtual

Topological Gravity as the Early Phase of Our Universe

Georges Obied
(Harvard University)
Abstract

Motivated by string dualities we propose topological gravity as the early phase of our universe.  The topological nature of this phase naturally leads to the explanation of many of the puzzles of early universe cosmology.  A concrete realization of this scenario using Witten's four dimensional topological gravity is considered.  This model leads to the power spectrum of CMB fluctuations which is controlled by the conformal anomaly coefficients $a,c$.  In particular the strength of the fluctuation is controlled by $1/a$ and its tilt by $c g^2$ where $g$ is the coupling constant of topological gravity.  The positivity of $c$, a consequence of unitarity, leads automatically to an IR tilt for the power spectrum.   In contrast with standard inflationary models, this scenario predicts $\mathcal{O}(1)$ non-Gaussianities for four- and higher-point correlators and the absence of tensor modes in the CMB fluctuations.

Fri, 23 Oct 2020

14:00 - 15:00
Virtual

MultiMAP: dimensionality reduction of multiple datasets by manifold approximation and projection

Dr Sarah Teichmann
(Wellcome Genome Campus Wellcome Sanger Institute)
Abstract

Multi-modal data sets are growing rapidly in single cell genomics, as well as other fields in science and engineering. We introduce MultiMAP, an approach for dimensionality reduction and integration of multiple datasets. MultiMAP embeds multiple datasets into a shared space so as to preserve both the manifold structure of each dataset independently, in addition to the manifold structure in shared feature spaces. MultiMAP is based on the rich mathematical foundation of UMAP, generalizing it to the setting of more than one data manifold. MultiMAP can be used for visualization of multiple datasets as well as an integration approach that enables subsequent joint analyses. Compared to other integration for single cell data, MultiMAP is not restricted to a linear transformation, is extremely fast, and is able to leverage features that may not be present in all datasets. We apply MultiMAP to the integration of a variety of single-cell transcriptomics, chromatin accessibility, methylation, and spatial data, and show that it outperforms current approaches in run time, label transfer, and label consistency. On a newly generated single cell ATAC-seq and RNA-seq dataset of the human thymus, we use MultiMAP to integrate cells across pseudotime. This enables the study of chromatin accessibility and TF binding over the course of T cell differentiation.

Fri, 23 Oct 2020

14:00 - 15:00
Virtual

Making the most of intercollegiate classes

Dr Richard Earl, Dr Neil Laws and Dr Vicky Neale
Abstract

What should you expect in intercollegiate classes?  What can you do to get the most out of them?  In this session, experienced class tutors will share their thoughts, including advice about hybrid and online classes. 

All undergraduate and masters students welcome, especially Part B and MSc students attending intercollegiate classes. (Students who attended the Part C/OMMS induction event will find significant overlap between the advice offered there and this session!)

Fri, 23 Oct 2020

14:00 - 15:00
Virtual

Snow evolution through meltwater percolation and compaction

Colin Meyer
(Dartmouth)
Abstract

Snow densification and meltwater refreezing store water in alpine regions and transform snow into ice on the surface of glaciers. Despite their importance in determining snow-water equivalent and glacier-induced sea level rise, we still lack a complete understanding of the physical mechanisms underlying snow compaction and the infiltration of meltwater into snowpacks. Here we (i) analyze snow compaction experiments as a promising direction for determining the rheology of snow though its many stages of densification and (ii) solve for the motion of refreezing fronts and for the temperature increase due to the release of latent heat, which we compare to temperature observations from the Greenland Ice Sheet (Humphrey et al., 2012). In the first part, we derive a mixture theory for compaction and air flow through the porous snow (cf. Hewitt et al. 2016) to compare against laboratory data (Wang and Baker, 2013). We find that a plastic compaction law explains experimental results. Taking standard forms for the permeability and effective pressure as functions of the porosity, we show that this compaction mode persists for a range of densities and overburden loads (Meyer et al., 2020). We motivate the second part of the talk by the observed melting at high elevations on the Greenland Ice Sheet, which causes the refreezing layers that are observed in ice cores. Our analysis shows that as surface temperatures increase, the capacity for meltwater storage in snow decreases and surface runoff increases leading to sea level rise (Meyer and Hewitt, 2017). Together these studies provide a holistic picture for how snow changes through compaction and the role of meltwater percolation in altering the temperature and density structure of surface snow.

Fri, 23 Oct 2020

11:45 - 13:15
Virtual

InFoMM CDT Group Meeting

Ellen Luckins, Ambrose Yim, Victor Wang, Christoph Hoeppke
(Mathematical Institute)
Thu, 22 Oct 2020

16:15 - 17:00
Virtual

The C*-algebras associated to a Wieler solenoid

Robin Deeley
(University of Colorado Boulder)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

Wieler has shown that every irreducible Smale space with totally disconnected stable sets is a solenoid (i.e., obtained via a stationary inverse limit construction). Through examples I will discuss how this allows one to compute the K-theory of the stable algebra, S, and the stable Ruelle algebra, S\rtimes Z. These computations involve writing S as a stationary inductive limit and S\rtimes Z as a Cuntz-Pimsner algebra. These constructions reemphasize the view point that Smale space C*-algebras are higher dimensional generalizations of Cuntz-Krieger algebras. The main results are joint work with Magnus Goffeng and Allan Yashinski.

Thu, 22 Oct 2020

16:00 - 17:00
Virtual

Thin Film Flows on a Substrate of Finite Width: A Novel Similarity Solution

Howard Stone
(Princeton)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

 

Abstract

There are many examples of thin-film flows in fluid dynamics, and in many cases similarity solutions are possible. In the typical, well-known case the thin-film shape is described by a nonlinear partial differential equation in two independent variables (say x and t), which upon recognition of a similarity variable, reduces the problem to a nonlinear ODE. In this talk I describe work we have done on 1) Marangoni-driven spreading on pre-wetted films, where the thickness of the pre-wetted film affects the dynamics, and 2) the drainage of a film on a vertical substrate of finite width. In the latter case we find experimentally a structure to the film shape near the edge, which is a function of time and two space variables. Analysis of the corresponding thin-film equation shows that there is a similarity solution, collapsing three independent variables to one similarity variable, so that the PDE becomes an ODE. The solution is in excellent agreement with the experimental measurements.