Data-driven surrogate modelling for astrophysical simulations: from stellar winds to supernovae
Abstract
The feedback loop between simulations and observations is the driving force behind almost all discoveries in astronomy. However, as technological innovations allow us to create ever more complex simulations and make ever more detailed observations, it becomes increasingly difficult to combine the two: since we cannot do controlled experiments, we need to simulate whatever we can observe. This requires efficient simulation pipelines, including (general-relativistic-)(magneto-)hydrodynamics, particle physics, chemistry, and radiation transport. In this talk, we explore the challenges associated with these modelling efforts and discuss how adopting data-driven surrogate modelling and proper control over model uncertainties, promises to unlock a gold mine of future discoveries. For instance, the application to stellar wind simulations can teach us about the origin of chemistry in our Universe and the building blocks for life, while supernova simulations can reveal exotic states of matter and elucidate the formation black holes.