Fri, 25 Oct 2019

12:45 - 13:45
C3

Toric geometry

Sebastjan Cizel
(University of Oxford)
Fri, 25 Oct 2019

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Clint Wong, Kristian Kiradjiev, Melanie Beckerleg, Giancarlo Antonucci
(Mathematical Institute)
Fri, 25 Oct 2019

10:00 - 11:00
L3

Maximum temperature rise of a thermally conductive cuboid subjected to a (potentially time dependent) power deposition profile

Wayne Arter
(CCFE)
Abstract

The challenge is to produce a reduced order model which predicts the maximum temperature rise of a thermally conducting object subjected to a power deposition profile supplied by an external code. The target conducting object is basically cuboidal but with one or more shaped faces and may have complex internal cooling structures, the deposition profile may be time dependent and exhibit hot spots and sharp edged shadows among other features. An additional feature is the importance of radiation which makes the problem nonlinear, and investigation of control strategies is also of interest. Overall there appears to be a sequence of problems of degree of difficulty sufficient to tax the most gifted student, starting with a line profile on a cuboid (quasi-2D) with linearised radiation term, and moving towards increased difficulty.

Thu, 24 Oct 2019

16:00 - 17:30
C5

The classifying space of the 1-dimensional homotopy bordism category

Jan Steinebrunner
Abstract

The homotopy bordism category hCob_d has as objects closed (d-1)-manifolds and as morphisms diffeomorphism classes of d-dimensional bordisms. This is a simplified version of the topologically enriched bordism category Cob_d whose classifying space B(Cob_d) been completely determined by Galatius-Madsen-Tillmann-Weiss in 2006. In comparison, little is known about the classifying space B(hCob_d).

In the first part of the talk I will give an introduction to bordism categories and their classifying spaces. In the second part I will identify B(hCob_1) showing, in particular, that the rational cohomology ring of hCob_1 is polynomial on classes \kappa_i in degrees 2i+2 for all i>=1. The seemingly simpler category hCob_1 hence has a more complicated classifying space than Cob_1.

Thu, 24 Oct 2019

16:00 - 17:00
L6

L-functions of Kloosterman sums

Javier Fresán
(Ecole Polytechnique)
Abstract

Guided by the analogy with certain moments of the Bessel function that appear as Feynman integrals, Broadhurst and Roberts recently studied a family of L-functions built up by assembling symmetric power moments of Kloosterman sums over finite fields. I will prove that these L-functions arise from potentially automorphic motives over the field of rational numbers, and hence admit a meromorphic continuation to the complex plane that satisfies the expected functional equation. If time permits, I will identify the periods of the corresponding motives with the Bessel moments and make a few comments about the special values of the L-functions. This is a joint work with Claude Sabbah and Jeng-Daw Yu.

Thu, 24 Oct 2019

16:00 - 17:30
L3

Modeling & large-scale simulation of thin film liquid crystal flows

Linda Cummings
(New Jersey Institute of Technology)
Abstract

Thin film flows of nematic liquid crystal will be considered, using the Leslie-Ericksen formulation for nematics. Our model can account for variations in substrate anchoring, which may exert a strong influence on patterns that arise in the flow. A number of simulations will be presented using an "in house" code, developed to run on a GPU. Current modeling directions involving flow over interlaced electrodes, so-called "dielectrowetting", will be discussed.

Thu, 24 Oct 2019

14:00 - 15:00
L4

Reliable Real Computing

Fredrik Johansson
(University of Bordeaux)
Abstract

Can we get rigorous answers when computing with real and complex numbers? There are now many applications where this is possible thanks to a combination of tools from computer algebra and traditional numerical computing. I will give an overview of such methods in the context of two projects I'm developing. The first project, Arb, is a library for arbitrary-precision ball arithmetic, a form of interval arithmetic enabling numerical computations with rigorous error bounds. The second project, Fungrim, is a database of knowledge about mathematical functions represented in symbolic form. It is intended to function both as a traditional reference work and as a software library to support symbolic-numeric methods for problems involving transcendental functions. I will explain a few central algorithmic ideas and explain the research goals of these projects.

Thu, 24 Oct 2019
13:00

Industrial agglomeration and diversification

Dr Samuel Heroy
(University of Oxford)
Abstract

As early as the 1920's Marshall suggested that firms co-locate in cities to reduce the costs of moving goods, people, and ideas. These 'forces of agglomeration' have given rise, for example, to the high tech clusters of San Francisco and Boston, and the automobile cluster in Detroit. Yet, despite its importance for city planners and industrial policy-makers, until recently there has been little success in estimating the relative importance of each Marshallian channel to the location decisions of firms.
Here we explore a burgeoning literature that aims to exploit the co-location patterns of industries in cities in order to disentangle the relationship between industry co-agglomeration and customer/supplier, labour and idea sharing. Building on previous approaches that focus on across- and between-industry estimates, we propose a network-based method to estimate the relative importance of each Marshallian channel at a meso scale. Specifically, we use a community detection technique to construct a hierarchical decomposition of the full set of industries into clusters based on co-agglomeration patterns, and show that these industry clusters exhibit distinct patterns in terms of their relative reliance on individual Marshallian channels.

The second part is to use industry relatedness, which we measure via a similar metric to co-location, to better understand the association of industrial emissions to city-industry agglomeration. Specifically, we see that industrial emissions (which are the largest source of greenhouse emissions in the US) are highly tied to certain industries, and furthermore that communities in the industry relatedness network tend to explain the tendency of particular industry clusters to produce emissions. This is important, because it limits cities' abilities to move to a greener industry basket as some cities may be more or less constrained to highly polluting industry clusters, while others have more potential for diversification away from polluting industries.

Thu, 24 Oct 2019

12:00 - 13:00
L4

Structure theory of RCD spaces up to codimension 1

Daniele Semola
(Scuola Normale Superiore di Pisa)
Abstract

The aim of this talk is to give an overview about the structure theory of finite dimensional RCD metric measure spaces. I will first focus on rectifiability, existence, uniqueness and constancy of the dimension of tangents up to negligible sets.
Then I will motivate why boundaries of sets of finite perimeter are natural codimension one objects to look at in this framework and present some recent structure results obtained in their study.
This is based on joint works with Luigi Ambrosio, Elia Bruè and Enrico Pasqualetto.
 

Wed, 23 Oct 2019
16:00
C1

Surfaces via subsurfaces: an introduction to Masur-Minsky

Harry Petyt
(University of Bristol)
Abstract

The mapping class group of a surface is a group of homeomorphisms of that surface, and these groups have been very well studied in the last 50 years. The talk will be focused on a way to understand such a group by looking at the subsurfaces of the corresponding surface; this is the so-called "Masur-Minsky hierarchy machinery". We'll finish with a non-technical discussion of hierarchically hyperbolic groups, which are a popular area of current research, and of which mapping class groups are important motivating examples. No prior knowledge of the objects involved will be assumed.

Tue, 22 Oct 2019

15:30 - 16:30
L6

Asymptotics of Toeplitz determinants with Fisher-Hartwig singularities and applications to random matrix theory

Benjamin Fahs
(Imperial College London)
Abstract

We discuss asymptotics of Toeplitz determinants with Fisher--Hartwig singularities, and give an overview of past and more recent results.
Applications include the study of asymptotics of certain statistics of the characteristic polynomial of the Circular Unitary Ensemble (CUE) of random matrices. In particular recent results in the study of Toeplitz determinants allow for a proof of a conjecture by Fyodorov and Keating on moments of averages of the characteristic polynomial of the CUE.
 

Tue, 22 Oct 2019

15:30 - 16:30
L4

Stability conditions and spectral networks

Fabian Haiden
(Oxford)
Abstract

Stability conditions on triangulated categories were introduced by Bridgeland, based on ideas from string theory. Conjecturally, they control existence of solutions to the deformed Hermitian Yang-Mills equation and the special Lagrangian equation (on the A-side and B-side of mirror symmetry, respectively). I will focus on the symplectic side and sketch a program which replaces special Lagrangians by "spectral networks", certain graphs enhanced with algebraic data. Based on joint work in progress with Katzarkov, Konstevich, Pandit, and Simpson.

Tue, 22 Oct 2019

14:30 - 15:00
L5

An optimal polynomial approximation of Brownian motion

James Foster
(Oxford)
Abstract

In this talk, I will present a strong (or pathwise) approximation of standard Brownian motion by a class of orthogonal polynomials. Most notably, the coefficients obtained from this expansion are independent Gaussian random variables. This will enable us to generate approximate Brownian paths by matching certain polynomial moments. To conclude the talk, I will discuss related works and applications to numerical methods for SDEs.
 

Tue, 22 Oct 2019
14:15
L4

Representations associated to gradations of colour Lie algebras

Philippe Meyer
(Oxford University)
Abstract

The notion of colour Lie algebra, introduced by Ree (1960), generalises notions of Lie algebra and Lie superalgebra. From an orthogonal representation V of a quadratic colour Lie algebra g, we give various ways of constructing a colour Lie algebra g’ whose bracket extends the bracket of g and the action of g on V. A first possibility is to consider g’=g⊕V and requires the cancellation of an invariant studied by Kostant (1999). Another construction is possible when the representation is ``special’’ and in this case the extension is of the form g’=g⊕sl(2,k)⊕V⊗k^2. Covariants are associated to special representations and satisfy to particular identities generalising properties studied by Mathews (1911) on binary cubics. The 7-dimensional fundamental representation of a Lie algebra of type G_2 and the 8-dimensional spinor representation of a Lie algebra of type so(7) are examples of special representations.

Tue, 22 Oct 2019

14:00 - 15:00
L6

Homomorphisms from the torus

Matthew Jenssen
(Oxford)
Further Information

We present a detailed probabilistic and structural analysis of the set of weighted homomorphisms from the discrete torus Z_m^n, where m is even, to any fixed graph. Our main result establishes the "phase coexistence" phenomenon in a strong form: it shows that the corresponding probability distribution on such homomorphisms is close to a distribution defined constructively as a certain random perturbation of some "dominant phase". This has several consequences, including solutions (in a strong form) to conjectures of Engbers and Galvin and a conjecture of Kahn and Park. Special cases include sharp asymptotics for the number of independent sets and the number of proper q-colourings of Z_m^n (so in particular, the discrete hypercube). For the proof we develop a `Cluster Expansion Method', which we expect to have further applications, by combining machinery from statistical physics, entropy and graph containers. This is joint work with Peter Keevash.
 

 
Tue, 22 Oct 2019

14:00 - 14:30
L5

A neural network based policy iteration algorithm with global H^2 -superlinear convergence for stochastic games on domains

Yufei Zhang
(Oxford)
Abstract

In this work, we propose a class of numerical schemes for solving semilinear Hamilton-Jacobi-Bellman-Isaacs (HJBI) boundary value problems which arise naturally from exit time problems of diffusion processes with controlled drift. We exploit policy iteration to reduce the semilinear problem into a sequence of linear Dirichlet problems, which are subsequently approximated by a multilayer feedforward neural network ansatz. We establish that the numerical solutions converge globally in the H^2 -norm, and further demonstrate that this convergence is superlinear, by interpreting the algorithm as an inexact Newton iteration for the HJBI equation. Moreover, we construct the optimal feedback controls from the numerical value functions and deduce convergence. The numerical schemes and convergence results are then extended to oblique derivative boundary conditions. Numerical experiments on the stochastic Zermelo navigation problem and the perpetual American option pricing problems are presented to illustrate the theoretical results and to demonstrate the effectiveness of the method.
 

Tue, 22 Oct 2019

12:45 - 14:00
C5

Numerical Simulations using Approximate Random Numbers

Oliver Sheridan-Methven
((Oxford University))
Abstract

Introducing cheap function proxies for quickly producing approximate random numbers, we show convergence of modified numerical schemes, and coupling between approximation and discretisation errors. We bound the cumulative roundoff error introduced by floating-point calculations, valid for 16-bit half-precision (FP16). We combine approximate distributions and reduced-precisions into a nested simulation framework (via multilevel Monte Carlo), demonstrating performance improvements achieved without losing accuracy. These simulations predominantly perform most of their calculations in very low precisions. We will highlight the motivations and design choices appropriate for SVE and FP16 capable hardware, and present numerical results on Arm, Intel, and NVIDIA based hardware.

 

Tue, 22 Oct 2019
12:00
L4

Differential equations for one-loop string integrals

Oliver Schlotterer
(Uppsala)
Abstract

In this talk, I will describe new mathematical structures in the low-energy  expansion of one-loop string amplitudes. The insertion of external states on the open- and closed-string worldsheets requires integration over punctures on a cylinder boundary and a torus, respectively. Suitable bases of such integrals will be shown to obey simple first-order differential equations in the modular parameter of the surface. These differential equations will be exploited  to perform the integrals order by order in the inverse string tension, similar to modern strategies for dimensionally regulated Feynman integrals. Our method manifests the appearance of iterated integrals over holomorphic  Eisenstein series in the low-energy expansion. Moreover, infinite families of Laplace equations can be generated for the modular forms in closed-string  low-energy expansions.
 

Tue, 22 Oct 2019

12:00 - 13:00
C1

Learning from signals on graphs with unobserved edges

Micheal Schaub
(Department of Engineering)
Abstract

In many applications we are confronted with the following scenario: we observe snapshots of data describing the state of a system at particular times, and based on these observations we want to infer the (dynamical) interactions between the entities we observe. However, often the number of samples we can obtain from such a process are far too few to identify the network exactly. Can we still reliable infer some aspects of the underlying system?
Motivated by this question we consider the following alternative system identification problem: instead of trying to infer the exact network, we aim to recover a (low-dimensional) statistical model of the network based on the observed signals on the nodes.  More concretely, here we focus on observations that consist of snapshots of a diffusive process that evolves over the unknown network. We model the (unobserved) network as generated from an independent draw from a latent stochastic block model (SBM), and our goal is to infer both the partition of the nodes into blocks, as well as the parameters of this SBM. We present simple spectral algorithms that provably solve the partition and parameter inference problems with high-accuracy.

Mon, 21 Oct 2019

16:00 - 17:00
C1

Relative decidability via the tilting correspondence

Konstantinos Kartas
(Oxford University)
Abstract

The goal of the talk is to present a proof of the following statement:
Let (K,v) be an algebraic extension of (Q_p,v_p) whose completion is perfectoid. We show that K is relatively decidable to its tilt K^♭, i.e. if K^♭ is decidable in the language of valued fields, then so is K. 
In the first part [of the talk], I will try to cover the necessary background needed from model theory and the theory of perfectoid fields.

Mon, 21 Oct 2019

16:00 - 17:00
L4

Quantitative geometric inequalities

Fabio Cavalletti
(SISSA)
Abstract

Localization technique permits to reduce full dimensional problems to possibly easier lower dimensional ones. During the last years a new approach to localization has been obtained using the powerful tools of optimal transport. Following this approach, we obtain quantitative versions of two relevant geometric inequalities  in comparison geometry as Levy-Gromov isoperimetric inequality (joint with F. Maggi and A. Mondino) and the spectral gap inequality (joint with A. Mondino and D. Semola). Both results are also valid in the more general setting of metric measure spaces verifying the so-called curvature dimension condition.

Mon, 21 Oct 2019
15:45
L6

Lower bounds on the tunnel number of composite spatial theta graphs

Scott Taylor
(Colby College)
Abstract

The tunnel number of a graph embedded in a 3-dimensional manifold is the fewest number of arcs needed so that the union of the graph with the arcs has handlebody exterior. The behavior of tunnel number with respect to connected sum of knots can vary dramatically, depending on the knots involved. However, a classical theorem of Scharlemann and Schultens says that the tunnel number of a composite knot is at least the number of factors. For theta graphs, trivalent vertex sum is the operation which most closely resembles the connected sum of knots. The analogous theorem of Scharlemann and Schultens no longer holds, however. I will provide a sharp lower bound for the tunnel number of composite theta graphs, using recent work on a new knot invariant which is additive under connected sum and trivalent vertex sum. This is joint work with Maggy Tomova.

Mon, 21 Oct 2019

15:45 - 16:45
L3

Fatou's Lemmas for Varying Probabilities and their Applications to Sequential Decision Making

EUGENE FEINBERG
(Stony Brook University)
Abstract

The classic Fatou lemma states that the lower limit of expectations is greater or equal than the expectation of the lower limit for a sequence of nonnegative random variables. This talk describes several generalizations of this fact including generalizations to converging sequences of probability measures. The three types of convergence of probability measures are considered in this talk: weak convergence, setwise convergence, and convergence in total variation. The talk also describes the Uniform Fatou Lemma (UFL) for sequences of probabilities converging in total variation. The UFL states the necessary and sufficient conditions for the validity of the stronger inequality than the inequality in Fatou's lemma. We shall also discuss applications of these results to sequential optimization problems with completely and partially observable state spaces. In particular, the UFL is useful for proving weak continuity of transition probabilities for posterior state distributions of stochastic sequences with incomplete state observations known under the name of Partially Observable Markov Decision Processes. These transition probabilities are implicitly defined by Bayes' formula, and general method for proving their continuity properties have not been available for long time. This talk is based on joint papers with Pavlo Kasyanov, Yan Liang, Michael Zgurovsky, and Nina Zadoianchuk.

Mon, 21 Oct 2019

14:15 - 15:15
L3

Variational Inference in Gaussian processes

JAMES HENSMAN
(Prowler.io)
Abstract

 Gaussian processes are well studied object in statistics and mathematics. In Machine Learning, we think of Gaussian processes as prior distributions over functions, which map from the index set to the realised path. To make Gaussian processes a practical tool for machine learning, we have developed tools around variational inference that allow for approximate computation in GPs leveraging the same hardware and software stacks that support deep learning. In this talk I'll give an overview of variational inference in GPs, show some successes of the method, and outline some exciting direction of potential future work.

Mon, 21 Oct 2019

14:15 - 15:15
L4

The pure cohomology of multiplicative quiver varieties

Kevin McGerty
(Oxford)
Further Information

Multiplicative quiver varieties are a variant of Nakajima's "additive" quiver varieties which were introduced by Crawley-Boevey and Shaw.
They arise naturally in the study of various moduli spaces, in particular in Boalch's work on irregular connections. In this talk we will discuss joint work with Tom Nevins which shows that the tautological classes for these varieties generate the largest possible subalgebra of the cohomology ring, namely the pure part.