Mon, 12 Jun 2023
16:00
L1

Departmental Colloquium

George Lusztig
(Massachusetts Institute of Technology)
Further Information

George Lusztig is the Abdun-Nur Professor of Mathematics. He joined the MIT mathematics faculty in 1978 following a professorship appointment at the University of Warwick, 1974-77. He was appointed Norbert Wiener Professor at MIT 1999-2009.

Lusztig graduated from the University of Bucharest in 1968, and received both the M.A. and Ph.D. from Princeton University in 1971 under the direction of Michael Atiyah and William Browder. Professor Lusztig works on geometric representation theory and algebraic groups. He has received numerous research distinctions, including the Berwick Prize of the London Mathematical Society (1977), the AMS Cole Prize in Algebra (1985), and the Brouwer Medal of the Dutch Mathematical Society (1999), and the AMS Leroy P. Steele Prize for Lifetime Achievement (2008), "for entirely reshaping representation theory, and in the process changing much of mathematics."

Professor Lusztig is a Fellow of the Royal Society (1983), Fellow of the American Academy of Arts & Sciences (1991), and Member of the National Academy of Sciences (1992). He was the recipient of the Shaw Prize (2014) and the Wolf Prize (2022).

Mon, 12 Jun 2023
16:00
C3

Probabilistic aspects of the Riemann zeta function

Khalid Younis
(University of Warwick)
Abstract

A central topic of study in analytic number theory is the behaviour of the Riemann zeta function. Many theorems and conjectures in this area are closely connected to concepts from probability theory. In this talk, we will discuss several results on the typical size of the zeta function on the critical line, over different scales. Along the way, we will see the role that is played by some probabilistic phenomena, such as the central limit theorem and multiplicative chaos.

Mon, 12 Jun 2023

16:00 - 17:00
L1

Fourier transform as a triangular matrix

George Lusztig
(MIT)
Abstract

Let $V$ be a finite dimensional vector space over the field with two elements with a given nondegenerate symplectic form. Let $[V]$ be the vector space of complex valued functions on $V$ and let $[V]_{\mathbb Z}$ be the subgroup of $[V]$ consisting of integer valued functions. We show that there exists a Z-basis of $[V]_{\mathbb Z}$ consisting of characteristic functions of certain explicit isotropic subspaces of $V$ such that the matrix of the Fourier transform from $[V]$ to $[V]$ with respect to this basis is triangular. This continues the tradition started by Hermite who described eigenvectors for the Fourier transform over real numbers.

Mon, 12 Jun 2023
15:30
L5

On the Dualizability of Fusion 2-Categories

Thibault Decoppet
Abstract

Fusion 2-categories were introduced by Douglas and Reutter so as to define a state-sum invariant of 4-manifolds. Categorifying a result of Douglas, Schommer-Pries and Snyder, it was conjectured that, over an algebraically closed field of characteristic zero, every fusion 2-category is a fully dualizable object in an appropriate symmetric monoidal 4-category. I will sketch a proof of this conjecture, which will proceed by studying, and in fact classifying, the Morita equivalence classes of fusion 2-categories. In particular, by appealing to the cobordism hypothesis, we find that every fusion 2-category yields a fully extended framed 4D TQFT. I will explain how these theories are related to the ones constructed using braided fusion 1-categories by Brochier, Jordan, and Snyder.

Mon, 12 Jun 2023

15:30 - 16:30
L3

On the multi-indices approach to path-wise stochastic analysis

Lorenzo Zambotti
Abstract

Recently Linares-Otto-Tempelmayr have unveiled a very interesting algebraic structure which allows to define a new class of rough paths/regularity structures, with associated applications to stochastic PDEs or ODEs. This approach does not consider trees as combinatorial tools but their fertility, namely the function which associates to each integer k the number of vertices in the tree with exactly k children. In a joint work with J-D Jacques we have studied this algebraic structure and shown that it is related with a general and simple class of so-called post-Lie algebras. The construction has remarkable properties and I will try to present them in the simplest possible way.

Mon, 12 Jun 2023
14:15
L1

Holographic description of code CFTs

Anatoly Dymarsky
(Kentucky)
Abstract

Recently, a relation was introduced connecting codes of various types with the space of abelian (Narain) 2d CFTs. We extend this relation to provide holographic description of code CFTs in terms of abelian Chern-Simons theory in the bulk. For codes over the alphabet Z_p corresponding bulk theory is, schematically, U(1)_p times U(1)_{-p} where p stands for the level. Furthermore, CFT partition function averaged over all code theories for the codes of a given type is holographically given by the Chern-Simons partition function summed over all possible 3d geometries. This provides an explicit and controllable example of holographic correspondence where a finite ensemble of CFTs is dual to "topological/CS gravity" in the bulk. The parameter p controls the size of the ensemble and "how topological" the bulk theory is. Say, for p=1 any given Narain CFT is described holographically in terms of U(1)_1^n times U(1)_{-1}^n Chern-Simons, which does not distinguish between different 3d geometries (and hence can be evaluated on any of them). When p approaches infinity, the ensemble of code theories covers the whole Narain moduli space with the bulk theory becoming "U(1)-gravity" proposed by Maloney-Witten and Afkhami-Jeddi et al.

Mon, 12 Jun 2023
14:15
L4

Resolutions of finite quotient singularities and quiver varieties

Steven Rayan
(quanTA Centre / University of Saskatchewan)
Abstract

Finite quotient singularities have a long history in mathematics, intertwining algebraic geometry, hyperkähler geometry, representation theory, and integrable systems.  I will highlight the correspondences at play here and how they culminate in Nakajima quiver varieties, which continue to attract interest in geometric representation theory and physics.  I will motivate some recent work of G. Bellamy, A. Craw, T. Schedler, H. Weiss, and myself in which we show that, remarkably, all of the resolutions of a particular finite quotient singularity are realized by a certain Nakajima quiver variety, namely that of the 5-pointed star-shaped quiver.  I will place this work in the wider context of the search for McKay-type correspondences for finite subgroups of $\mathrm{SL}(n,\mathbb{C})$ on the one hand, and of the construction of finite-dimensional-quotient approximations to meromorphic Hitchin systems and their integrable systems on the other hand.  The Hitchin system perspective draws upon my prior joint works with each of J. Fisher and L. Schaposnik, respectively. Time permitting, I will speculate upon the symplectic duality of Higgs and Coulomb branches in this setting.

Mon, 12 Jun 2023

14:00 - 15:00
Lecture Room 6

Group-invariant tensor train networks for supervised learning

Nick Vannieuwenhoven
Abstract

Invariance under selected transformations has recently proven to be a powerful inductive bias in several machine learning models. One class of such models are tensor train networks. In this talk, we impose invariance relations on tensor train networks. We introduce a new numerical algorithm to construct a basis of tensors that are invariant under the action of normal matrix representations of an arbitrary discrete group. This method can be up to several orders of magnitude faster than previous approaches. The group-invariant tensors are then combined into a group-invariant tensor train network, which can be used as a supervised machine learning model. We applied this model to a protein binding classification problem, taking into account problem-specific invariances, and obtained prediction accuracy in line with state-of-the-art invariant deep learning approaches. This is joint work with Brent Sprangers.

Mon, 12 Jun 2023
13:00
L1

Spacetime and Duality symmetries

Peter West
(KCL )
Abstract

We argue that the existence of solitons in theories in which local symmetries are spontaneously broken requires spacetime to be enlarged by additional coordinates that are associated with large local transformations. In the context of gravity theories the usual coordinates of spacetime can be thought of arising in this way. E theory automatically contains such an enlarged spacetime. We propose that spacetime appears in an underlying theory when the local symmetries are spontaneously broken.

Fri, 09 Jun 2023
16:00
L2

North meets South

Dr Thomas Karam (North Wing) and Dr Hamid Rahkooy (South Wing)
Abstract

North Wing talk: Dr Thomas Karam
Title: Ranges control degree ranks of multivariate polynomials on finite prime fields.

Abstract: Let $p$ be a prime. It has been known since work of Green and Tao (2007) that if a polynomial $P:\mathbb{F}_p^n \mapsto \mathbb{F}_p$ with degree $2 \le d \le p-1$ is not approximately equidistributed, then it can be expressed as a function of a bounded number of polynomials each with degree at most $d-1$. Since then, this result has been refined in several directions. We will explain how this kind of statement may be used to deduce an analogue where both the assumption and the conclusion are strengthened: if for some $1 \le t < d$ the image $P(\mathbb{F}_p^n)$ does not contain the image of a non-constant one-variable polynomial with degree at most $t$, then we can obtain a decomposition of $P$ in terms of a bounded number of polynomials each with degree at most $\lfloor d/(t+1) \rfloor$. We will also discuss the case where we replace the image $P(\mathbb{F}_p^n)$ by for instance $P(\{0,1\}^n)$ in the assumption.

 

South Wing talk: Dr Hamid Rahkooy
Title: Toric Varieties in Biochemical Reaction Networks

Abstract: Toric varieties are interesting objects for algebraic geometers as they have many properties. On the other hand, toric varieties appear in many applications. In particular, dynamics of many biochemical reactions lead to toric varieties. In this talk we discuss how to test toricity algorithmically, using computational algebra methods, e.g., Gröbner bases and quantifier elimination. We show experiments on real world models of reaction networks and observe that many biochemical reactions have toric steady states. We discuss complexity bounds and how to improve computations in certain cases.

Fri, 09 Jun 2023

14:00 - 15:00
L3

Recent and past results on stochastically-modelled biochemical reaction networks

Professor Jinsu Kim
(POSTECH Pohang)
Abstract

When a biological system is modelled using a mathematical process, the next step is often to estimate the system parameters. Although computational and statistical techniques have been developed to estimate parameters for complex systems, this can be a difficult task. As a result, researchers have focused on revealing parameter-independent dynamical properties of a system. In this talk, we will discuss the study of qualitative behaviors of stochastic biochemical systems using reaction networks, which are graphical configurations of biochemical systems. The goal of this talk is to (1) introduce the basic modelling aspects of stochastically-modelled reaction networks and (2) discuss important results in this literature, including the random time representation, relationships between stochastic and deterministic models, and derivation of stability via network structures.

Fri, 09 Jun 2023

12:30 - 13:30
C1

The Harish-Chandra local character expansion and canonical dimensions for p-adic reductive groups

Mick Gielen
(University of Oxford)
Abstract

A complex irreducible admissible representation of a reductive p-adic group is typically infinite-dimensional. To quantify the "size" of such representations, we introduce the concept of canonical dimension. To do so we have to discuss the Moy-Prasad filtrations. These are natural filtrations of the parahoric subgroups. Next, we relate the canonical dimension to the Harish-Chandra local character expansion, which expresses the distribution character of an irreducible representation in terms of nilpotent orbital integrals. Using this, we consider the wavefront set of a representation. This is an invariant the naturally arises from the local character expansion. We conclude by explaining why the canonical dimension might be considered a weaker but more computable alternative to the wavefront set.

Fri, 09 Jun 2023

10:00 - 11:00
Online

Extracting vital signs from photoplethysmogram (PPG) signals.

Shashank Chaganty MBBS, MSc(Oxon), MRCS(Ed)
(Vichag)
Further Information

The virtual ward project in the UK aims to revolutionise community-based remote patient monitoring for high-risk patients. Currently, NHS trusts provide patients in the community with smartphones (for communication purposes) and vital signs monitoring equipment (such as BP cuffs and oxygen saturation probes). Apart from the initial capital cost of purchasing the equipment, the trusts incur additional costs for logistics (delivering equipment to and from patients) and sterilisation processes. But what if the smartphone itself could capture vital signs? The algorithm development process would utilise open-source code to extract photoplethysmogram (PPG) waveforms from video pixels captured through the "finger-on-camera" technique. The challenge lies in accurately extracting vital signs information from these PPG waveforms.

 

Thu, 08 Jun 2023
17:00
L4

Pushing Properties for NIP Groups and Fields up the n-dependent hierarchy

Nadja Hempel
(HHU Düsseldorf)
Abstract

(joint with Chernikov) 1-dependent theories, better known as NIP theories, are the first class of the strict hierarchy of n-dependent theories. The random n-hypergraph is the canonical object which is n-dependent but not (n−1)-dependent. We proved the existence of strictly n-dependent groups for all natural numbers n. On the other hand, there are no known examples of strictly n-dependent fields and we conjecture that there aren’t any. 

We were interested which properties of groups and fields for NIP theories remain true in or can be generalized to the n-dependent context. A crucial fact about (type-)definable groups in NIP theories is the absoluteness of their connected components. Our first aim is to give examples of n-dependent groups and discuss a adapted version of absoluteness of the connected component. Secondly, we will review the known properties of NIP fields and see how they can be generalized.

Thu, 08 Jun 2023
16:00
L5

The elliptic Gamma function and Stark units for complex cubic fields

Luis Garcia
(University College London)
Abstract

The elliptic Gamma function — a generalization of the q-Gamma function, which is itself the q-analog of the ordinary Gamma function — is a meromorphic special function in several variables that mathematical physicists have shown to satisfy modular functional equations under SL(3,Z). In this talk I will present evidence (numerical and theoretical) that this function often takes algebraic values that satisfy explicit reciprocity laws and that are related to derivatives of Hecke L-functions at s=0. Thus this function conjecturally allows to extend the theory of complex multiplication to complex cubic fields as envisioned by Hilbert's 12th problem. This is joint work with Nicolas Bergeron and Pierre Charollois.

Thu, 08 Jun 2023
14:00
C4

The ABJM SCFT

Horia Magureanu
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 08 Jun 2023
14:00
L3

Condition numbers of tensor decompositions

Nick Vannieuwenhoven
(KU Leuven)
Abstract

Tensor decomposition express a tensor as a linear combination of elementary tensors. They have applications in chemometrics, computer science, machine learning, psychometrics, and signal processing. Their uniqueness properties render them suitable for data analysis tasks in which the elementary tensors are the quantities of interest. However, in applications, the idealized mathematical model is corrupted by measurement errors. For a robust interpretation of the data, it is therefore imperative to quantify how sensitive these elementary tensors are to perturbations of the whole tensor. I will give an overview of recent results on the condition number of tensor decompositions, established with my collaborators C. Beltran, P. Breiding, and N. Dewaele.

Thu, 08 Jun 2023

12:00 - 13:00
Lecture room 5

Mathematical Modelling of Metal Forming

Ed Brambley
(University of Warwick)
Abstract

Metal forming involves permanently deforming metal into a required shape.  Many forms of metal forming are used in industry: rolling, stamping, pressing, drawing, etc; for example, 99% of steel produced globally is first rolled before any subsequent processing.  Most theoretical studies of metal forming use Finite Elements, which is not fast enough for real-time control of metal forming processes, and gives little extra insight.  As an example of how little is known, it is currently unknown whether a sheet of metal that is squashed between a large and a small roller should curve towards the larger roller, or towards the smaller roller.  In this talk, I will give a brief overview of metal forming, and then some progress my group have been making on some very simplified models of cold sheet rolling in particular.  The mathematics involved will include some modelling and asymptotics, multiple scales, and possibly a matrix Wiener-Hopf problem if time permits.

Thu, 08 Jun 2023

10:00 - 12:00
C2

Nonlinear Fokker-Planck equations modelling large networks of neurons

Dr Pierre Roux
(Oxford University)
Further Information

Sessions led by Dr Pierre Roux will take place on

30 May 2023 10:00 - 12:00 C2

6 June 2023 15:00 - 17:00 C2

8 June 2023 10:00 - 12:00 C2

13 June 2023 15:00 - 17:00 C2

Participants should have a good knowledge of Functional Analysis; basic knowledge about PDEs and distributions; and notions in probability. Should you be interested in taking part in the course, please send an email to @email.

Abstract

PhD_course_Roux_1.pdf

We will start from the description of a particle system modelling a finite size network of interacting neurons described by their voltage. After a quick description of the non-rigorous and rigorous mean-field limit results, we will do a detailed analytical study of the associated Fokker-Planck equation, which will be the occasion to introduce in context powerful general methods like the reduction to a free boundary Stefan-like problem, the relative entropy methods, the study of finite time blowup and the numerical and theoretical exploration of periodic solutions for the delayed version of the model. I will then present some variants and related models, like nonlinear kinetic Fokker-Planck equations and continuous systems of Fokker-Planck equations coupled by convolution.

Wed, 07 Jun 2023
16:00
L6

TBC

TBC
Wed, 07 Jun 2023

13:00 - 14:00
N3.12

Mathematrix: In Conversation with Philip Maini

Abstract

We will be joined by Philip Maini, Professor of Mathematical Biology and Ethnic Minorities Fellow at St John's College, to discuss his mathematical journey and experiences.

Tue, 06 Jun 2023

17:00 - 18:00
Virtual

The Critical Beta-splitting Random Tree

David Aldous
(U.C. Berkeley and University of Washington)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In the critical beta-splitting model of a random $n$-leaf rooted tree, clades (subtrees) are recursively split into sub-clades, and a clade of $m$ leaves is split into sub-clades containing $i$ and $m-i$ leaves with probabilities $\propto 1/(i(m-i))$. This model turns out to have interesting properties. There is a canonical embedding into a continuous-time model ($\operatorname{CTCS}(n)$). There is an inductive construction of $\operatorname{CTCS}(n)$ as $n$ increases, analogous to the stick-breaking constructions of the uniform random tree and its limit continuum random tree. We study the heights of leaves and the limit fringe distribution relative to a random leaf. In addition to familiar probabilistic methods, there are analytic methods (developed by co-author Boris Pittel), based on explicit recurrences, which often give more precise results. So this model provides an interesting concrete setting in which to compare and contrast these methods. Many open problems remain.
Preprints at https://arxiv.org/abs/2302.05066 and https://arxiv.org/abs/2303.02529

Tue, 06 Jun 2023

15:30 - 16:30
Virtual

The Metropolis Algorithm for the Planted Clique Problem

Elchanan Mossel
(MIT)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

More than 30 year ago Jerrum studied the planted clique problem and proved that under worst-case initialization Metropolis fails to recover planted cliques of size $\ll n^{1/2}$ in the Erdős-Rényi graph $G(n,1/2)$. This result is classically cited in the literature of the problem, as the "first evidence" that finding planted cliques of size much smaller than square root $n$ is "algorithmically hard". Cliques of size $\gg n^{1/2}$ are easy to find using simple algorithms. In a recent work we show that the Metropolis process actually fails to find planted cliques under worst-case initialization for cliques up to size almost linear in $n$. Thus the algorithm fails well beyond the $\sqrt{n}$ "conjectured algorithmic threshold". We also prove that, for a large parameter regime, that the Metropolis process fails also under "natural initialization". Our results resolve some open questions posed by Jerrum in 1992. Based on joint work with Zongchen Chen and Iias Zadik.

Tue, 06 Jun 2023

15:00 - 17:00
C2

Nonlinear Fokker-Planck equations modelling large networks of neurons

Dr Pierre Roux
(Oxford University)
Further Information

Sessions led by Dr Pierre Roux will take place on

30 May 2023 10:00 - 12:00 C2

6 June 2023 15:00 - 17:00 C2

8 June 2023 10:00 - 12:00 C2

13 June 2023 15:00 - 17:00 C2

Participants should have a good knowledge of Functional Analysis; basic knowledge about PDEs and distributions; and notions in probability. Should you be interested in taking part in the course, please send an email to @email.

Abstract

PhD_course_Roux_0.pdf

We will start from the description of a particle system modelling a finite size network of interacting neurons described by their voltage. After a quick description of the non-rigorous and rigorous mean-field limit results, we will do a detailed analytical study of the associated Fokker-Planck equation, which will be the occasion to introduce in context powerful general methods like the reduction to a free boundary Stefan-like problem, the relative entropy methods, the study of finite time blowup and the numerical and theoretical exploration of periodic solutions for the delayed version of the model. I will then present some variants and related models, like nonlinear kinetic Fokker-Planck equations and continuous systems of Fokker-Planck equations coupled by convolution.

Tue, 06 Jun 2023

15:00 - 16:00
L4

Generating tuples of Fuchsian groups

Richard Weidmann
Abstract

Generating n-tuples of a group G, or in other words epimorphisms Fₙ→G are usually studied up to the natural right action of Aut(Fₙ) on Epi(Fₙ,G); here Fₙ is the free group of n generators. The orbits are then called Nielsen classes. It is a classic result of Nielsen that for any n ≥ k there is exactly one Nielsen class of generating n-tuples of Fₖ. This result was generalized to surface groups by Louder.

In this talk the case of Fuchsian groups is discussed. It turns out that the situation is much more involved and interesting. While uniqueness does not hold in general one can show that each class is represented by some unique geometric object called an "almost orbifold covers". This can be thought of as a classification of Nielsen classes. This is joint work with Ederson Dutra.

Tue, 06 Jun 2023
14:00
C6

Dr. Guillaume St-Onge

Dr. Guillaume St-Onge
(Northeastern University Network Science Institute)
Abstract

TBA

Tue, 06 Jun 2023

14:00 - 15:00
C5

Simplicity of Nekrashevych algebras of contracting self-similar groups

Nora Szakacs
(University of Manchester)
Abstract

A self-similar group is a group $G$ acting on a regular, infinite rooted tree by automorphisms in such a way that the self-similarity of the tree is reflected in the group. The most common examples are generated by the states of a finite automaton. Many famous groups, like Grigorchuk's 2-group of intermediate growth, are of this form. Nekrashevych associated $C^*$-algebras and algebras with coefficients in a field to self-similar groups. In the case $G$ is trivial, the algebra is the classical Leavitt algebra, a famous finitely presented simple algebra. Nekrashevych showed that the algebra associated to the Grigorchuk group is not simple in characteristic 2, but Clark, Exel, Pardo, Sims, and Starling showed its Nekrashevych algebra is simple over all other fields. Nekrashevych then showed that the algebra associated to the Grigorchuk-Erschler group is not simple over any field (the first such example). The Grigorchuk and Grigorchuk-Erschler groups are contracting self-similar groups. This important class of self-similar groups includes Gupta-Sidki p-groups and many iterated monodromy groups like the Basilica group. Nekrashevych proved algebras associated to contacting groups are finitely presented.

In this talk, we discuss a result of the speaker and Benjamin Steinberg characterizing simplicity of Nekrashevych algebras of contracting groups. In particular, we give an algorithm for deciding simplicity given an automaton generating the group. We apply our results to several families of contracting groups like GGS groups and Sunic's generalizations of Grigorchuk's group associated to polynomials over finite fields.

Tue, 06 Jun 2023

14:00 - 15:00
L6

The wavefront set of unipotent representations with real infinitesimal character

Emile Okada
(National University of Singapore)
Abstract

For a reductive group defined over a p-adic field, the wavefront set is an invariant of an admissible representations which roughly speaking measures the direction of the singularities of the character near the identity. Studied first by Roger Howe in the 70s, the wavefront set has important connections to Arthur packets, and has been the subject of thorough investigation in the intervening years. One of main lines of inquiry is to determine the relation between the wavefront set and the L-parameter of a representation. In this talk we present new results answering this question for unipotent representations with real infinitesimal character. The results are joint with Dan Ciubotaru and Lucas Mason-Brown.

Tue, 06 Jun 2023

11:00 - 12:00
L4

Renormalization of perturbative quantum gravity

David Prinz
(MPIM Bonn)
Abstract

General Relativity and Quantum Theory are the two main achievements of physics in the 20th century. Even though they have greatly enlarged the physical understanding of our universe, there are still situations which are completely inaccessible to us, most notably the Big Bang and the inside of black holes: These circumstances require a theory of Quantum Gravity — the unification of General Relativity with Quantum Theory. The most natural approach for that would be the application of the astonishingly successful methods of perturbative Quantum Field Theory to the graviton field, defined as the deviation of the metric with respect to a fixed background metric. Unfortunately, this approach seemed impossible due to the non-renormalizable nature of General Relativity. In this talk, I aim to give a pedagogical introduction to this topic, in particular to the Lagrange density, the Feynman graph expansion and the renormalization problem of their associated Feynman integrals. Finally, I will explain how this renormalization problem could be overcome by an infinite tower of gravitational Ward identities, as was established in my dissertation and the articles it is based upon, cf. arXiv:2210.17510 [hep-th].

Tue, 06 Jun 2023

11:00 - 12:00
L4

Level lines of smooth Gaussian fields

Akshay Hegde
Abstract

We talk about the Hausdorff measure of level sets of the fields, say length of level lines of a planar field. Given two coupled stationary fields  $f_1, f_2$ , we estimate the difference of Hausdorff measure of level sets in expectation, in terms of $C^2$-fluctuations of the field $F=f_1-f_2$. The main idea in the proof is to represent difference in volume as an integral of mean curvature using the divergence theorem. This approach is different from using the Kac-Rice type formula as the main tool in the analysis. 

Mon, 05 Jun 2023
16:30
L4

KPP traveling waves in the half-space

Cole Graham
(Brown University)
Abstract

Reaction–diffusion equations are widely used to model spatial propagation, and constant-speed "traveling waves" play a central role in their dynamics. These waves are well understood in "essentially 1D" domains like cylinders, but much less is known about waves with noncompact transverse structure. In this direction, we will consider traveling waves of the KPP reaction–diffusion equation in the Dirichlet half-space. We will see that minimal-speed waves are unique (unlike faster waves) and exhibit curious asymptotics. The arguments rest on potential theory, the maximum principle, and a powerful connection with the probabilistic system known as branching Brownian motion.

This is joint work with Julien Berestycki, Yujin H. Kim, and Bastien Mallein.

Mon, 05 Jun 2023
16:00
C3

On Sarnak's Moebius Disjointness Conjecture

Fei Wei
(University of Oxford)
Abstract

It is known that there exists certain randomness in the values of the Moebius function. It is widely believed that this randomness predicts significant cancellations in the summation of the Moebius function times any 'reasonable' sequence. This rather vague principle is known as an instance of the 'Moebius randomness principle'. Sarnak made this principle precise by identifying the notion 'reasonable' as deterministic. More precisely, Sarnak's Moebius Disjointness Conjecture predicts the disjointness of the Moebius function from any arithmetic functions realized in any topological dynamical systems of zero topological entropy. In this talk, I will firstly introduce some background and progress on this conjecture. Secondly, I will talk about some of my work on this. Thirdly, I will talk some related problems to this conjecture.

Mon, 05 Jun 2023
14:15
L4

Ancient solutions to the Ricci flow coming out of spherical orbifolds

Alix Deruelle
(Sorbonne Université)
Abstract

Given a 4-dimensional Einstein orbifold that cannot be desingularized by smooth Einstein metrics, we investigate the existence of an ancient solution to the Ricci flow coming out of such a singular space. In this talk, we will focus on singularities modeled on a cone over $\mathbb{R}P^3$ that are desingularized by gluing Eguchi-Hanson metrics to get a first approximation of the flow. We show that a parabolic version of the corresponding obstructed gluing problem has a  smooth solution: the bubbles are shown to grow exponentially in time, a phenomenon that is intimately connected to the instability of such orbifolds. Joint work with Tristan Ozuch.

Mon, 05 Jun 2023

14:00 - 15:00
Lecture Room 6

Embedded Deep Learning for Prediction and Control of Complex Turbulent Flows

Professor Jonathan F. MacArt
Abstract

Accurately predicting turbulent fluid mechanics remains a significant challenge in engineering and applied science. Reynolds-Averaged Navier–Stokes (RANS) simulations and Large-Eddy Simulation (LES) are generally accurate, though non-Boussinesq turbulence and/or unresolved multiphysical phenomena can preclude predictive accuracy in certain regimes. In turbulent combustion, flame–turbulence interactions lead to inverse-cascade energy transfer, which violates the assumptions of many RANS and LES closures. We survey the regime dependence of these effects using a series of high-resolution Direct Numerical Simulations (DNS) of turbulent jet flames, from which an intermediate regime of heat-release effects, associated with the hypothesis of an “active cascade,” is apparent, with severe implications for physics- and data-driven closure models. We apply adjoint-based data assimilation method to augment the RANS and LES equations using trusted (though not necessarily high-fidelity) data. This uses a Python-native flow solver that leverages differentiable-programming techniques, automatic construction of adjoint equations, and solver-in-the-loop optimization. Applications to canonical turbulence, shock-dominated flows, aerodynamics, and flow control are presented, and opportunities for reacting flow modeling are discussed.

Mon, 05 Jun 2023
13:00
L1

Gravity’s Attractive Blocks

Seyed Morteza Hosseini
(Imperial College )
Abstract

There has been recent advances in understanding the microscopic origin of the Bekenstein-Hawking entropy of supersymmetric ant de Sitter (AdS) black holes using holography and localization applied to the dual quantum field theory. In this talk, after a brief overview of the general picture, I will propose a BPS partition function -- based on gluing elementary objects called gravitational blocks -- for known AdS black holes with arbitrary rotation and generic magnetic and electric charges. I will then show that the attractor equations and the Bekenstein-Hawking entropy can be obtained from an extremization principle.

Fri, 02 Jun 2023
16:00
L1

OUI: Consultancy 101

Dawn Gordon, Project Manager
(Oxford University Innovation)
Abstract

Come to this session to learn how to get started in consultancy from Dawn Gordon at Oxford University Innovation (OUI). After an introduction to what consultancy is, we'll explore case studies of consultancy work performed by mathematicians and statisticians within the university. This session will also include practical advice on how you can explore consultancy opportunities alongside your research work, from finding potential clients to the support that OUI can offer.

Fri, 02 Jun 2023

15:00 - 16:00
Lecture room 5

Projected barcodes and distances for multi-parameter persistence modules

Francois Petit
Abstract

In this talk, I will present the notion of projected barcodes and projected distances for multi-parameter persistence modules. Projected barcodes are defined as derived pushforward of persistence modules onto R. Projected distances come in two flavors: the integral sheaf metrics (ISM) and the sliced convolution distances (SCD). I will explain how the fibered barcode is a particular instance of projected barcodes and how the ISM and the SCD provide lower bounds for the convolution distance. 

Furthermore, in the case where the persistence module considered is the sublevel-sets persistence modules of a function f : X -> R^n, we will explain how, under mild conditions, the projected barcode of this module by a linear map u : R^n \to R is the collection of sublevel-sets barcodes of the composition uf . In particular, it can be computed using software dedicated to one-parameter persistence modules. This is joint work with Nicolas Berkouk.

Fri, 02 Jun 2023

12:00 - 13:00
N3.12

Complex representations of finite group of Lie type - inductive methods

Elena Collacciani
(University of Padova)
Abstract

Finite groups of Lie type arise as the rational point over a finite field of a reductive linear algebraic group.

A standard technique to gain knowledge about representations of these groups and to classify them consist in detecting a suitable family of subgroups and building representations of the group by induction starting from the ones of the subgroups. The "classical" instance of this general idea Is the so called "Harish-Chandra theory", that is the study of representations by exploiting parabolic induction from Levi subgroups. Toward the end of last century,  Deligne and Lusztig developed an enhancement of this theory, constructing a new induction that allows to keep track of "twisted" object. 

My aim is to give an overview of some of the constructions involved and of the main results in these theories.

Thu, 01 Jun 2023
17:00
L4

Cancelled: An effective mixed André-Oort result

Gareth Jones
(University of Manchester)
Abstract

Habegger showed that a subvariety of a fibre power of the Legendre family of elliptic curves is special if and only if it contains a Zariski-dense set of special points. I'll discuss joint work with Gal Binyamini, Harry Schmidt, and Margaret Thomas in which we use pfaffian methods to obtain an effective uniform version of Manin-Mumford for products of CM elliptic curves. Using this we then prove an effective version of Habegger's result.

Thu, 01 Jun 2023
16:00
L5

An Euler system for the symmetric square of a modular form

Christopher Skinner
(Princeton University)
Abstract

I will explain a new construction of an Euler system for the symmetric square of an eigenform and its connection with L-values. The construction makes use of some simple Eisenstein cohomology classes for Sp(4) or, equivalently, SO(3,2). This is an example of a larger class of similarly constructed Euler systems.  This is a report on joint work with Marco Sangiovanni Vincentelli.

Thu, 01 Jun 2023

15:00 - 16:00
L6

A Lagrangian Klein Bottle You Can't Squeeze

Matthew Buck
(University of Lancaster)
Abstract

Given a non-orientable Lagrangian surface L in a symplectic 4-manifold, how far
can the cohomology class of the symplectic form be deformed before there is no
longer a Lagrangian isotopic to L? I will properly introduce this and a
related question, both of which are less interesting for orientable
Lagrangians due to topological conditions. The majority of this talk will be
an exposition on Evans' 2020 work in which he solves this deformation
question for a particular Klein bottle. The proof employs the heavy machinery
of symplectic field theory and more classical pseudoholomorphic
curve theory to severely constrain the topology and intersection properties of
the limits of certain pseudoholomorphic curves under a process called
neck-stretching. The treatment of SFT-related material will be light and focus
mainly on how one can use the compactness theorem to prove interesting things.

Thu, 01 Jun 2023
14:00
N3.12

Neutrino masses in string theory

Dewi Gould
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 01 Jun 2023

14:00 - 15:00
Lecture Room 6

Data-driven reduced-order modeling through rational approximation and balancing: Loewner matrix approaches

Victor Gosea
(MPI Magdeburg)
Abstract

Data-driven reduced-order modeling aims at constructing models describing the underlying dynamics of unknown systems from measurements. This has become an increasingly preeminent discipline in the last few years. It is an essential tool in situations when explicit models in the form of state space formulations are not available, yet abundant input/output data are, motivating the need for data-driven modeling. Depending on the underlying physics, dynamical systems can inherit differential structures leading to specific physical interpretations. In this work, we concentrate on systems that are described by differential equations and possess linear dynamics. Extensions to more complicated, nonlinear dynamics are also possible and will be briefly covered here if time permits.

The methods developed in our study use rational approximation based on Loewner matrices. Starting with the approach by Antoulas and Anderson in '86, and moving forward to the one by Mayo and Antoulas in '07, the Loewner framework (LF) has become an established methodology in the model reduction and reduced-order modeling community. It is a data-driven approach in the sense that what is needed to compute the reduced models is solely data, i.e., samples of the system's transfer function. As opposed to conventional intrusive methods that require an actual large-scale model to reduce (described by many differential equations), the LF only needs measurements in compressed format. In the former category of approaches, we mention balanced truncation (BT), arguably one of the most prevalent model reduction methods. Introduced in the early 80s, this method constructs reduced-order models (ROMs) by using balancing and truncating steps (with respect to classical system theory concepts such as controllability and observability). We show that BT can be reinterpreted as a data-driven approach, by using again the Loewner matrix as a central ingredient. By making use of quadrature approximations of certain system theoretical quantities (infinite Gramian matrices), a novel method called QuadBT (quadrature-based BT) is introduced by G., Gugercin, and Beattie in '22. We show parallels with the LF and, if time permits, certain recent extensions of QuadBT. Finally, all theoretical considerations are validated on various numerical test cases.

 

Thu, 01 Jun 2023
12:00
L1

Plant Tropisms as a Window on Plant Computational Processes

Yasmine Meroz
(Tel Aviv University)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Abstract

A growing plant is a fascinating system involving multiple fields. Biologically, it is a multi-cellular system controlled by bio-chemical networks. Physically, it is an example of an "active solid" whose element (cells) are active, performing mechanical work to drive the evolving geometry. Computationally, it is a distributed system, processing a multitude of local inputs into a coordinated developmental response. In this talk I will discuss how plants, a living information-processing organism, uses physical laws and biological mechanisms to alter its own shape, and negotiate its environment. Here I will focus on two examples reflecting the computational and mechanical aspects: (i) probing temporal integration in gravitropic responses reveals plants sum and subtract signals, (ii) the interplay between active growth-driven processes and passive mechanics.

Wed, 31 May 2023
17:00
Lecture Theatre 1, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG

A world from a sheet of paper - Tadashi Tokieda

Tadashi Tokieda
(Stanford University)
Further Information

Starting from just a sheet of paper, by folding, stacking, crumpling, sometimes tearing, Tadashi will explore a diversity of phenomena, from magic tricks and geometry through elasticity and the traditional Japanese art of origami to medical devices and an ‘h-principle’. Much of the show consists of table-top demonstrations, which you can try later with friends and family.

So, take a sheet of paper. . .

Tadashi Tokieda is a professor of mathematics at Stanford.  He grew up as a painter in Japan, became a classical philologist (not to be confused with philosopher) in France and, having earned a PhD in pure mathematics from Princeton, has been an applied mathematician in England and the US; all in all, he has lived in eight countries so far.  Tadashi is very active in mathematical outreach, notably with the African Institute for Mathematical Sciences. You'll find him on Numberphile's YouTube channel.

Please email @email to register.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Wed, 31 May 2023
16:00
L6

Accessibility, QI-rigidity, and planar graphs

Joseph MacManus
(University of Oxford)
Abstract

A common pastime of geometric group theorists is to try and derive algebraic information about a group from the geometric properties of its Cayley graphs. One of the most classical demonstrations of this can be seen in the work of Maschke (1896) in characterising those finite groups with planar Cayley graphs. Since then, much work has been done on this topic. In this talk, I will attempt to survey some results in this area, and show that the class group with planar Cayley graphs is QI-rigid.

Wed, 31 May 2023

16:00 - 17:00
L4

Mathematics and its history, through literature

Sarah Hart
(Birkbeck, University of London)
Abstract

Mathematics has always been part of the fabric of culture. References to mathematics in literature go back at least as far as Aristophanes, and encompass everyone from Dostoevsky to Oscar Wilde. In this talk I’ll explore some of the ways that literature has engaged with mathematical ideas, from the 17th and 18th century obsession with the cycloid (the “Helen of Geometry”) to the 19th century love of the fourth dimension.

Tue, 30 May 2023
16:00
L6

Fermionic semiclassical L^p estimates

Ngoc Nhi Nguyen
(University of Milan)
Abstract

Spectral properties of Schrödinger operators are studied a lot in mathematical physics. They can give the description of trapped fermionic particles. This presentation will focus on the non-interacting case. I will explain why it is relevant to estimate L^p bounds of orthonormal families of eigenfuntions at the semiclassical regime and then, give the main ideas of the proof.